ZnO基復合電極材料的制備與電化學性能研究
發(fā)布時間:2018-04-29 02:22
本文選題:超級電容器 + 氧化鋅。 參考:《東華大學》2016年碩士論文
【摘要】:超級電容器作為一種新型的綠色儲能器件,具有高功率密度,長循環(huán)壽命,快充放電速率以及環(huán)境友好等顯著優(yōu)點,逐漸成為下一代能源裝置中最具潛力的存儲設(shè)備。根據(jù)電荷儲存機制分類,超級電容器大致可以分為雙電層電容器和贗電容器。其中,碳材料屬于雙電層電容,主要是通過電極/電解液界面發(fā)生的可逆靜電離子吸附來存儲電荷。而過渡金屬氧化物和導電聚合物則屬于贗電容,主要利用電極材料表面發(fā)生的快速可逆法拉第氧化還原反應(yīng)來存儲電荷。目前,贗電容超級電容器的研究對象主要是過渡金屬氧化物,主要因為其豐度高,價格低廉等特點;由于不同的過渡金屬氧化物有著各異的微觀結(jié)構(gòu)和組分,在作為電極材料時,電極/電解液界面性質(zhì)和離子傳輸速率也各不相同,因此電荷存儲能力表現(xiàn)出本質(zhì)的差異。最近,幾種電化學活性材料組合后的多組分復合材料由于協(xié)同效應(yīng)的作用表現(xiàn)出優(yōu)異的電化學性能。在這篇碩士學位論文中,我們針對過渡金屬氧化物和氫氧化物電極材料的缺點,設(shè)計并合成了兩種Zn O基復合電極材料,對其電化學性能作了充分研究和討論。主要研究內(nèi)容如下:(1)通過簡單的水熱法和化學浴沉積法在泡沫鎳集流體上制備了Zn O@Co Ni(OH)2復合電極材料。電化學測試結(jié)果表明,Zn O@Co Ni(OH)2復合電極材料在2 m A/cm2電流密度下面積和質(zhì)量比電容分別達到0.87 F/cm2和1081 F/g,優(yōu)于原始的Co(OH)2電極材料(108 F/g)和Ni(OH)2(578 F/g)電極材料。而且具有優(yōu)異的速率比電容,即使電流密度增大到30 m A/cm2,比電容仍能保持原始的64%。同時,Zn O@Co Ni(OH)2復合電極材料具有良好的循環(huán)穩(wěn)定性(3000圈后比電容保持率為85.7%)。(2)通過簡單的水熱法和溶劑熱法在泡沫鎳集流體上制備了Zn O@V2O5復合電極材料。研究了第二步溶劑熱過程中不同的三異丙醇氧釩單體濃度和反應(yīng)溫度對雜化結(jié)構(gòu)材料形貌的影響,結(jié)合電化學性能測試結(jié)果得到了反應(yīng)溫度和三異丙醇氧釩單體濃度最優(yōu)化方案(100 ul,130℃,10 h)。電化學測試結(jié)果表明,Zn O@V2O5電極材料在5 m V/s的掃描速率下質(zhì)量比電容為152 F/g,而且Zn O@V2O5電極材料經(jīng)過2000圈循環(huán)穩(wěn)定性測試后的電容保持率為93.6%。
[Abstract]:As a new type of green energy storage devices, supercapacitors have many advantages such as high power density, long cycle life, fast charge / discharge rate and environmental friendliness. They have become the most potential storage devices in the next generation energy devices. Supercapacitors can be classified into double layer capacitors and pseudo-capacitors according to charge storage mechanism. Among them, carbon material belongs to double layer capacitance, mainly through reversible electrostatic ion adsorption at the electrode / electrolyte interface to store charge. Transition metal oxides and conductive polymers are pseudo-capacitors, which mainly store charge by fast reversible Faraday redox reaction on the surface of electrode materials. At present, the research object of pseudo-capacitor supercapacitors is mainly transition metal oxides, mainly because of their high abundance and low price, because different transition metal oxides have different microstructure and composition. As an electrode material, the interface properties and ion transport rates of the electrode / electrolyte are different, so the charge storage capacity is essentially different. Recently, the multicomponent composites with several kinds of electrochemical active materials show excellent electrochemical performance due to synergistic effect. In this master's degree thesis, we have designed and synthesized two kinds of Zn-O based composite electrode materials aiming at the shortcomings of transition metal oxide and hydroxide electrode materials. The electrochemical properties of these materials have been fully studied and discussed. The main research contents are as follows: (1) Zn O@Co Ni(OH)2 composite electrode materials were prepared on nickel foam by simple hydrothermal method and chemical bath deposition method. The electrochemical test results show that the area and mass specific capacitance of Zn O@Co Ni(OH)2 composite electrode material are 0.87 F/cm2 and 1081 F / g at 2 m A/cm2 current density respectively, which is superior to that of the original Co(OH)2 electrode material (108F / g) and Ni(OH)2(578 F / g electrode material. Moreover, it has excellent rate specific capacitance, even if the current density increases to 30 Ma / cm ~ 2, the specific capacitance can still keep the original 64%. At the same time, the Zn O@Co Ni(OH)2 composite electrode material has good cycle stability and the specific capacitance retention rate is 85.7 after 3000 cycles. The Zn O@V2O5 composite electrode material was prepared by simple hydrothermal method and solvothermal method on the nickel foam collector. The effects of different concentration of vanadium triisopropanol monomer and reaction temperature on the morphology of hybrid materials during the second step solvothermal process were studied. The optimum reaction temperature and concentration of vanadium triisopropanol at 130 鈩,
本文編號:1817960
本文鏈接:http://sikaile.net/kejilunwen/huaxue/1817960.html
最近更新
教材專著