新型鈷基硒化物電極材料的制備及催化釋氫性能研究
本文選題:過渡金屬硒化物 + 電/光電催化制氫; 參考:《浙江大學(xué)》2017年博士論文
【摘要】:隨著能源危機(jī),環(huán)境污染等問題的日益突出,人類社會(huì)對(duì)以氫能為代表的清潔能源的需求越來越迫切,水分解制氫作為理想的獲取氫能的方法成為研究的熱點(diǎn)。由于水分解產(chǎn)氫反應(yīng)(Hydrogen Evolution Reaction,HER)是一個(gè)耗能的上坡反應(yīng),實(shí)際外加電壓往往要高于理論值。電催化和光電催化作為兩種重要的水分解制氫的方式,其核心問題是如何實(shí)現(xiàn)電能和太陽(yáng)能向化學(xué)能的高效轉(zhuǎn)化。研究表明,在電極表面負(fù)載產(chǎn)氫催化劑改善反應(yīng)動(dòng)力學(xué)是提升反應(yīng)速率的關(guān)鍵,但是目前在電催化和光電催化分解水體系以Pt等為代表的貴金屬催化劑由于成本等問題不適宜于水分解制氫的大規(guī)模應(yīng)用。鈷基硒化物由于具有適宜的結(jié)合氫原子的能力,且價(jià)格低廉,儲(chǔ)量豐富,被認(rèn)為是理想的Pt釋氫催化劑替代材料。但如何實(shí)現(xiàn)鈷基硒化物的簡(jiǎn)便合成、晶相調(diào)控以及如何與半導(dǎo)體材料耦合仍面臨很大挑戰(zhàn)。本論文通過創(chuàng)新催化材料的制備方法制備了高效的鈷基硒化物,并系統(tǒng)探究不同工藝條件下鈷基硒化物的形成機(jī)理、物相組成、微觀形貌。針對(duì)目前過渡金屬化合物電催化釋氫材料制備工藝復(fù)雜的問題,我們提出一種簡(jiǎn)便的氣相反應(yīng)方法,即在Se蒸氣的氛圍里,使鈷基無機(jī)鹽直接轉(zhuǎn)化為黃鐵礦型CoSe_2晶體。進(jìn)一步地,針對(duì)塊狀晶體催化活性位點(diǎn)少,催化能力差等問題,提出通過設(shè)計(jì)混晶結(jié)構(gòu)來提高晶體材料催化活性的研究思路;首先利用電沉積合成CoSex,然后通過改變煅燒溫度實(shí)現(xiàn)CoSe_2晶體結(jié)構(gòu)從斜方晶型(o-CoSe_2)到立方晶型(c-CoSe_2)的調(diào)控,首次合成了由(c-CoSe_2)和(o-CoSe_2)組成的混晶CoSe_2(-CoSe_2);炀ЫY(jié)構(gòu)中不同晶型晶體界面處的原子的周期性排列發(fā)生劇烈變化,原子具有更高的自由度,由此產(chǎn)生的晶面缺陷進(jìn)一步提高了 CoSe_2晶體的電催化活性,其釋氫Tafel斜率為30mV/decade(與Pt相同),而且具有優(yōu)異穩(wěn)定性。在光電催化體系中,實(shí)現(xiàn)催化劑與半導(dǎo)體的有效耦合非常困難,特別是對(duì)以硅為基底的光電陰極,由于硅基底與催化劑界面相容性差、催化劑阻礙硅基對(duì)光的吸收等問題,大多數(shù)晶體電催化材料不能直接應(yīng)用于光電催化體系。此外,常規(guī)催化劑負(fù)載工藝會(huì)在硅表面引入缺陷,影響光電轉(zhuǎn)化效率。針對(duì)上述問題,為了構(gòu)建高效半導(dǎo)體-催化劑體系,我們有針對(duì)性地設(shè)計(jì)出電催化性能優(yōu)異(Tafe1~39 mV/decade)且透光性良好的三元鈷基無定形薄膜(NiCoSex)。利用溫和的光輔助-電沉積的方法,以吸光性能良好的三維硅納米柱陣列(p-SiNP)為基底,構(gòu)建了具有“核-殼”結(jié)構(gòu)的p-Si/NiCoSexNP異質(zhì)結(jié)復(fù)合電極,100 mW/cm2的模擬太陽(yáng)光條件下,釋氫光電流為-37.5 mA/cm2,是目前以p-Si為基底的光電陰極電流的最高值。本論文以制備高效的水分解釋氫催化材料為目標(biāo),系統(tǒng)研究了不同鈷基硒化物結(jié)構(gòu)與催化析氫性能的構(gòu)效關(guān)系;構(gòu)建了“半導(dǎo)體-催化劑”高效光電催化體系,實(shí)現(xiàn)了光生電子的有效收集和利用。本論文將為設(shè)計(jì)其它具有類似結(jié)構(gòu)的催化材料提供有益的借鑒,并為Si基半導(dǎo)體析氫材料走向工業(yè)化提供新材料和新思路。
[Abstract]:As the energy crisis, environmental pollution and other problems become increasingly prominent, the demand for clean energy represented by hydrogen energy is becoming more and more urgent in human society. Water decomposition and hydrogen production as an ideal method for obtaining hydrogen energy has become a hot spot. Because of the water decomposition hydrogen production (Hydrogen Evolution Reaction, HER) is a energy consuming upslope reaction, practical The applied voltage is often higher than the theoretical value. Electrocatalysis and photoelectrocatalysis are two important ways of water decomposition and hydrogen production. The core problem is how to realize the efficient conversion of electric energy and solar energy to chemical energy. The precious metal catalysts, such as Pt and so on, are not suitable for the large-scale application of hydrogen production. The cobalt based selenide is considered to be a substitute for the Pt hydrogen release catalyst because it has the ability to combine the hydrogen atom with the suitable hydrogen atom, and is considered to be the substitute for the hydrogen release catalyst. The simple synthesis of cobalt based selenide, the regulation of crystal phase and how to coupling with semiconductor materials are still facing great challenges. In this paper, a highly efficient cobalt based selenide is prepared by the preparation of innovative catalytic materials. The formation mechanism, phase composition and Micromorphology of cobalt based selenide under different technological conditions are systematically explored. A complex process for the preparation of electrocatalytic hydrogen release materials for metal compounds, we have proposed a simple method of gas phase reaction, that is, the cobalt based inorganic salts are converted directly into pyrite type CoSe_2 crystals in the atmosphere of Se vapor. The structure is used to improve the catalytic activity of crystal materials. First, CoSex is synthesized by electrodeposition, and then the CoSe_2 crystal structure is regulated from o-CoSe_2 to cubic (c-CoSe_2) by changing the calcination temperature. The mixed crystal CoSe_2 (-CoSe_2) composed of (c-CoSe_2) and (o-CoSe_2) is synthesized for the first time. The different crystal structure in the mixed crystal structure is synthesized. The periodic arrangement of atoms at the interface of the type crystal occurs violently, and the atom has a higher degree of freedom. The resulting crystal surface defects further improve the electrocatalytic activity of the CoSe_2 crystal. The Tafel slope of the hydrogen release is 30mV/decade (the same as that of Pt), and has excellent stability. In the photoelectrocatalysis system, the catalyst and the semi conductance are realized. The effective coupling of the body is very difficult, especially for the silicon based photocathode. Because the compatibility of the silicon substrate and the catalyst interface is poor, the catalyst hinders the absorption of the silicon base to the light, most of the crystal electrocatalysis materials can not be directly applied to the photoelectrocatalysis system. In addition, the conventional catalyst loading process will introduce defects on the silicon surface. In order to build an efficient semiconductor catalyst system, we have designed a three element cobalt based amorphous film (NiCoSex) with excellent electrocatalytic performance (Tafe1 ~ 39 mV/decade) and good transmittance in order to construct an efficient semiconductor catalyst system. A p-Si/NiCoSexNP heterojunction composite electrode with a "nuclear shell" structure is constructed on the base of p-SiNP, which is the highest value of the photocurrent current on the base of p-Si under the simulated solar light condition of 100 mW/cm2, which is the highest value of the photocurrent current on the basis of p-Si. The structure-activity relationship between the structure of different cobalt based selenides and the catalytic hydrogen evolution performance was studied. The efficient photoelectric catalysis system of "semiconductor catalyst" was constructed, and the effective collection and utilization of photogenerated electrons were realized. This paper will provide useful reference for the design of other similar structure catalytic materials and walk for the Si based semiconductor hydrogen evolution material. Provide new materials and new ideas for industrialization.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:O643.36;TQ116.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 林寨偉;花文廷;;有機(jī)硒化物的反應(yīng)及其在天然產(chǎn)物合成中的應(yīng)用[J];化學(xué)通報(bào);1989年06期
2 楊祥良,王芹,陶云海,姚澍,徐輝碧;一種合成二硒化鈉和有機(jī)二硒化物的新方法[J];無機(jī)化學(xué)學(xué)報(bào);2001年06期
3 郄文娟;周蕾;黃海英;彭云鵬;;硒化物藥用研究進(jìn)展[J];微量元素與健康研究;2013年03期
4 黃奕清;某些無機(jī)硒化物的用途[J];有色冶煉;1986年06期
5 劉興芝;趙昌明;陳林;于桂英;臧樹良;;三元多硒化物的微波溶劑熱合成及其結(jié)構(gòu)[J];中國(guó)有色金屬學(xué)報(bào);2006年10期
6 鄺光榮,黎星術(shù),鄭玉才,陳煉紅,李春華,謝如剛,游勁松;硒酵母制備中添加不同硒化物對(duì)酵母中硒含量的影響[J];西南民族學(xué)院學(xué)報(bào)(自然科學(xué)版);1998年03期
7 李龍泉,張國(guó)輝,李亞棟;硒化物和碲化物納米粉組分的測(cè)定[J];中國(guó)科學(xué)技術(shù)大學(xué)學(xué)報(bào);1999年06期
8 龔曉鐘,歐陽(yáng)政;硒化黃芪多糖制備條件及其結(jié)構(gòu)的研究[J];天然產(chǎn)物研究與開發(fā);1998年02期
9 鄭時(shí)龍,,陶虎,胥佩菱;有機(jī)鍺倍半硒化物的合成[J];合成化學(xué);1995年04期
10 金康雨;李宣鎬;;一個(gè)新的K/Pd/Se體系中四金屬硒化物的合成與結(jié)構(gòu)表征(英文)[J];吉林師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年03期
相關(guān)會(huì)議論文 前1條
1 張明建;郭國(guó)聰;;Ln_6Se_(11.25)(Ln=Gd、Dy)的合成和非線性[A];中國(guó)化學(xué)會(huì)第28屆學(xué)術(shù)年會(huì)第8分會(huì)場(chǎng)摘要集[C];2012年
相關(guān)博士學(xué)位論文 前1條
1 張紅秀;新型鈷基硒化物電極材料的制備及催化釋氫性能研究[D];浙江大學(xué);2017年
相關(guān)碩士學(xué)位論文 前10條
1 白玉玲;銅基硫硒化物薄膜太陽(yáng)能電池吸收層材料的制備[D];電子科技大學(xué);2015年
2 章建飛;基于單質(zhì)硒活化制備金屬硒化物半導(dǎo)體納米材料的方法學(xué)研究[D];電子科技大學(xué);2014年
3 王高云;基于硒化物層狀材料的濕法刻蝕和光電特性研究[D];電子科技大學(xué);2015年
4 王麗陽(yáng);納米硒化物及其復(fù)合材料的制備與光、電催化性能研究[D];黑龍江大學(xué);2016年
5 郭凱璐;鎳鈷基硒化物的制備及其超級(jí)電容性能研究[D];中原工學(xué)院;2017年
6 趙京鳳;鈷、鎳硒化物的溶劑熱合成及其性質(zhì)研究[D];安徽大學(xué);2013年
7 吳丹梅;溶劑熱法制備納米硫化物、硒化物及相關(guān)材料的摩擦學(xué)性能研究[D];青島科技大學(xué);2006年
8 趙培光;硒化蔗糖的合成表征及生物活性研究[D];華中師范大學(xué);2011年
9 文青瑤;銅鋅錫硫光吸收薄膜鈉摻雜及硒化對(duì)其光電性能影響的研究[D];西北師范大學(xué);2015年
10 劉鷺;硒化乳酸菌胞外多糖免疫功能機(jī)制研究[D];寧波大學(xué);2014年
本文編號(hào):1775051
本文鏈接:http://sikaile.net/kejilunwen/huaxue/1775051.html