氧化鋅及鐵酸鎳三維光子晶體的制備及性能研究
本文選題:蛋白石結(jié)構(gòu) 切入點(diǎn):反蛋白石結(jié)構(gòu) 出處:《陜西科技大學(xué)》2017年碩士論文
【摘要】:光子晶體本質(zhì)上是一種有序結(jié)構(gòu),由不同介質(zhì)在空間周期性排列得到。結(jié)構(gòu)特殊性賦予光子晶體材料許多特性,比如光子帶隙、光子局域效應(yīng)等。其中,光子帶隙是其最基本的特性,類似于半導(dǎo)體能帶結(jié)構(gòu)中的帶隙對(duì)電子的作用,光子帶隙也可以對(duì)光子起到調(diào)制作用。本文分別介紹了聚甲基丙烯酸甲酯(PMMA)、ZnO蛋白石光子晶體材料及ZnO、NiFe_2O_4反蛋白石光子晶體材料的制備,通過(guò)對(duì)PMMA、ZnO蛋白石形成的結(jié)構(gòu)色、ZnO反蛋白石的光催化性能及NiFe_2O_4反蛋白石的微波吸收性能的表征,研究這種特殊微結(jié)構(gòu)對(duì)材料各種性能的影響,以便未來(lái)可以擴(kuò)展出光子晶體更多潛在應(yīng)用。(1)采用無(wú)皂乳液聚合法,制備了單分散性良好且粒徑均一可控的膠體聚甲基丙烯酸甲酯(PMMA)微球,采用XRD,SEM,FT-IR,UV-Vis反射光譜等對(duì)微球及微球自組裝后得到的光子晶體結(jié)構(gòu)色進(jìn)行了表征。結(jié)果表明,所制備的微球?yàn)榉蔷w,球面較為光滑,粒徑較為均一,介于150~300nm;粒徑受單體濃度、引發(fā)劑加入量、反應(yīng)溫度和攪拌速度影響。微球粒徑隨單體含量增加而變大;隨引發(fā)劑添加量和攪拌速度的增加呈現(xiàn)出先增大后減小的趨勢(shì);反應(yīng)最佳溫度為75 oC。組裝成膜的結(jié)構(gòu)色與微球粒徑之間呈正比關(guān)系,可隨微球粒徑的增大發(fā)生紅移;光子晶體中存在的缺陷及過(guò)度受熱會(huì)使光子晶體的有效折射率減小,結(jié)構(gòu)色亮度降低。(2)采用溶膠凝膠兩步法制備了單分散性良好、粒徑均一可控的ZnO膠體微球,采用XRD,SEM,TEM,FT-IR,TG-DSC及UV-Vis反射光譜等對(duì)影響微球粒徑的因素及微球自組裝后得到的光子晶體結(jié)構(gòu)色進(jìn)行表征。分析結(jié)果表明,制備的ZnO微球?yàn)榧儍舻睦w鋅礦結(jié)構(gòu),由ZnO顆粒團(tuán)聚而成,球面較為粗糙,粒徑介于150~500 nm之間。微球粒徑隨著前驅(qū)液加入量增加而逐漸變小。微球內(nèi)含有約30%的有機(jī)物殘留,煅燒后微球會(huì)發(fā)生輕微收縮。采用重力沉積法組裝得到ZnO光子晶體結(jié)構(gòu)色層,乳液濃度越大,得到的結(jié)構(gòu)色層越厚;相比于PMMA結(jié)構(gòu)色,ZnO結(jié)構(gòu)色層更耐溫。(3)采用自制的PMMA光子晶體為模板,金屬離子硝酸鹽混合液為前驅(qū)液,通過(guò)模板法成功制備了具有反蛋白石結(jié)構(gòu)的ZnO材料,采用XRD,SEM,TEM,TG,DRS等對(duì)材料的形貌及光催化性能進(jìn)行分析。研究發(fā)現(xiàn),制備的ZnO反蛋白石為纖鋅礦結(jié)構(gòu),其結(jié)構(gòu)受到填充前驅(qū)液的濃度、浸漬次數(shù)及模板移除溫度的影響,尤其模板移除溫度過(guò)高會(huì)導(dǎo)致結(jié)構(gòu)變形坍塌。光催化性能分析發(fā)現(xiàn),反蛋白石具有的有序連通孔結(jié)構(gòu)和慢光效應(yīng),有效提高了光利用率和有機(jī)染料轉(zhuǎn)移效率,使其光催化性能優(yōu)于同反應(yīng)條件下制備的ZnO材料。(4)采用模板法制備了NiFe_2O_4反蛋白石材料,采用XRD,SEM,TEM,VNA等對(duì)樣品的物相、形貌及性能進(jìn)行了表征。研究發(fā)現(xiàn),制備的NiFe_2O_4為純相的尖晶石結(jié)構(gòu),結(jié)晶性良好;NiFe_2O_4反蛋白石具有完整的三維有序孔結(jié)構(gòu),孔形成于有機(jī)模板的煅燒移除,光滑的孔壁由鐵酸鹽納米顆粒組成,顆粒尺寸均小于27 nm,孔徑介于70~200 nm之間。與普通無(wú)序的鐵酸鹽納米顆粒材料的吸波性能進(jìn)行對(duì)比可以發(fā)現(xiàn):其反射損耗最大可達(dá)27.5 dB,高于無(wú)序NiFe_2O_4顆粒的17.4 d B,使其吸波性能有了很大提高。
[Abstract]:Photonic crystal is essentially a kind of ordered structure by different media periodically arranged in space. The special structure of photonic crystal materials gives many characteristics, such as photonic band gap photonic localization effect. The photonic band gap is the most basic feature, similar to the effect of band gap semiconductor energy band structure of electronic, photonic band gap can also modulate the photon. This paper introduces the polymethylmethacrylate (PMMA), ZnO opal photonic crystal materials and ZnO, NiFe_2O_4 inverse opal materials preparation, based on the PMMA structure, ZnO color opal formation, characterization of absorption properties of ZnO inverse opal and photocatalytic properties NiFe_2O_4 inverse opal microwave, study the special micro structure of various properties of materials, so that the future can be extended to more potential applications of photonic crystal. (1) using soap free emulsion polymerization Legitimate, good monodispersity and uniform particle size controllable colloid was prepared by polymethyl methacrylate (PMMA) microspheres, using XRD, SEM, FT-IR, color of the photonic crystal structure and self-assembly of microspheres microspheres obtained were characterized by UV-Vis spectroscopy. The results indicated that the prepared microspheres for non spherical crystal, more smooth, uniform sizes, ranging from 150~300nm; particle size by monomer concentration, initiator dosage, reaction temperature and stirring speed. The size of microspheres with monomer content increases; with the initiator dosage and stirring speed increase increases first and then decreases; the optimal reaction temperature 75 oC. assembly is proportional to the membrane structure color and particle size, particle size increases with redshift; defects in photonic crystals and excessive heating will make the effective refractive index of the photonic crystals decreases, structural color brightness Reduced. (2) preparation of monodispersed sol gel by two - step method, colloidal ZnO microspheres, uniform particle size controllable by XRD, SEM, TEM, FT-IR, TG-DSC and UV-Vis photonic crystal structure color reflection spectrum effect on particle size factors and microspheres self-assembly obtained were characterized. The results show that the ZnO microspheres for the wurtzite structure of pure, by the agglomeration of ZnO particles into the spherical surface is rough, the particle size is 150~500 nm. The particle size of precursor solution with addition of organic matter decreased. Microspheres containing about 30% residues, the calcined microspheres will happen slight shrinkage. Assembly of ZnO photonic crystal layer by gravity deposition method, emulsion concentration and the structure of the layer is thicker than the PMMA structure; ZnO structure layer color, more resistant to temperature. (3) the PMMA photonic crystal made of metal ion as template, nitrate mixture As the liquid precursor solution, the template method was successfully prepared with inverse opal structure of ZnO material, using XRD, SEM, TEM, TG, DRS etc. Analysis of morphology and light on the catalytic performance of materials. The study found that the preparation of ZnO inverse opal is of wurtzite structure. Its structure is filled with precursor concentration liquid, effect of impregnation times and template removal temperature, especially the template removal too high temperature will cause the deformation of structure collapse. Analysis showed that the photocatalytic properties of inverse opal is orderly connected pore structure and slow light effect, effectively improves the light utilization rate and organic dye transfer efficiency, the preparation of ZnO photocatalytic material to make it the performance is better than the same reaction conditions. (4) NiFe_2O_4 inverse opal materials was prepared by template method using XRD, SEM, TEM, VNA of the sample phase, morphology and properties were investigated. The study found that the prepared NiFe_2O_4 is pure phase spinel. The good crystallinity; NiFe_2O_4 inverse opal with 3D ordered pore structure, calcination to remove the hole formed in the organic template, smooth hole wall is composed of ferrite nano particles, the particle size was less than 27 nm, pore size between 70~200 and nm. Can be found between the absorbing properties of ferrite nanoparticles of common salt random: the maximum reflection loss of up to 27.5 dB, 17.4 d higher than the disordered NiFe_2O_4 particles B, the absorbing performance has been greatly improved.
【學(xué)位授予單位】:陜西科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O734
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 肖勇;;表面微納結(jié)構(gòu)制備技術(shù)進(jìn)展及其在智能防偽包裝中的應(yīng)用[J];中國(guó)包裝工業(yè);2015年11期
2 王芬;茍紫娟;朱建鋒;李偉東;蓋言成;安凱妮;;聚苯乙烯光子晶體結(jié)構(gòu)色的制備及其性能研究[J];陜西科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年01期
3 于清波;;反蛋白石結(jié)構(gòu)石墨型氮化碳制備及光催化降解研究[J];工業(yè)水處理;2013年11期
4 祝雅娟;付猛;唐昭芳;;三維有序大孔碳的合成及其在染料敏化太陽(yáng)能電池中的應(yīng)用[J];人工晶體學(xué)報(bào);2013年06期
5 郭肅晉;李德毅;張永剛;周雪飛;張亞雷;;光子晶體在光催化領(lǐng)域的研究進(jìn)展[J];材料導(dǎo)報(bào);2013年03期
6 張起;馬勇;鄧泉;王寅;付宏偉;;納米氧化鋅制備及應(yīng)用研究進(jìn)展[J];中國(guó)西部科技;2011年33期
7 李文甫;胡曉斌;趙斌元;;二氧化鈦光子晶體的制備及其光學(xué)性能的研究[J];功能材料;2010年S3期
8 李宇杰;謝凱;李效東;許靜;韓喻;杜盼盼;;低溫等離子體增強(qiáng)化學(xué)氣相沉積法制備Ge反opal三維光子晶體及其光學(xué)性能[J];物理學(xué)報(bào);2010年03期
9 喻平;歐紅葉;;垂直沉積法自組裝膠體光子晶體的研究進(jìn)展[J];重慶師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年04期
10 涂圣義;許靜;謝凱;李宇杰;梁國(guó)杰;李運(yùn)鵬;;電化學(xué)沉積制備二氧化釩反蛋白石光子晶體[J];人工晶體學(xué)報(bào);2008年04期
相關(guān)博士學(xué)位論文 前3條
1 王雷;石墨烯三維復(fù)合材料的制備及其微波吸收性能研究[D];西北工業(yè)大學(xué);2014年
2 謝煒;ZnO及其復(fù)合物的光催化性能的研究[D];武漢理工大學(xué);2012年
3 鄧開(kāi)發(fā);光子晶體的非線性光學(xué)特性研究[D];華中科技大學(xué);2004年
相關(guān)碩士學(xué)位論文 前7條
1 陳璐;光子晶體慢光效應(yīng)及光傳輸特性研究[D];電子科技大學(xué);2016年
2 茍紫娟;聚苯乙烯三維光子晶體結(jié)構(gòu)色薄膜的研究[D];陜西科技大學(xué);2016年
3 謝望;鐵酸鉍反蛋白石光子晶體的制備和光催化性能的研究[D];遼寧大學(xué);2015年
4 陳辰;激光干涉光刻法制備SiO_2光子晶體薄膜[D];廈門大學(xué);2014年
5 李永輝;光子晶格帶隙結(jié)構(gòu)的實(shí)驗(yàn)研究及理論模擬[D];內(nèi)蒙古師范大學(xué);2013年
6 張驁;電泳沉積法制備結(jié)構(gòu)色纖維[D];蘇州大學(xué);2012年
7 楊艷青;Ta_2O_5反蛋白石結(jié)構(gòu)光子晶體的制備及其光學(xué)特性的研究[D];太原理工大學(xué);2011年
,本文編號(hào):1723375
本文鏈接:http://sikaile.net/kejilunwen/huaxue/1723375.html