高壓下新型聚合氮結(jié)構(gòu)的設(shè)計及合成
本文選題:聚合氮 切入點:高壓 出處:《吉林大學》2017年博士論文
【摘要】:聚合氮是高壓下解離雙原子分子氮形成的由氮氮單鍵鍵合而成的全新網(wǎng)絡(luò)狀結(jié)構(gòu)。由于氮氮三鍵(946 KJ/mol)與氮氮單鍵(159 KJ/mol)間存在巨大的能差,當聚合氮解聚恢復(fù)成分子氮時將釋放巨大的能量,其能量密度是現(xiàn)有材料的5倍以上。因此,聚合氮是一種突破傳統(tǒng)的高能量密度材料,在眾多領(lǐng)域有著廣泛的應(yīng)用前景。目前,已經(jīng)有兩種聚合氮結(jié)構(gòu)在實驗上得到了證實(cg-N結(jié)構(gòu)和PL-N結(jié)構(gòu))。這些研究極大地激發(fā)了人們對其他含氮體系的研究熱情。研究含氮體系的高壓相變,以及是否存在聚合相;通過高壓化合手段,能否形成新的高含氮化合物,并形成聚合相;通過納米限域方法,能否使聚合氮穩(wěn)定到常溫常壓,是當前聚合氮研究領(lǐng)域中的關(guān)鍵科學問題。針對上述科學問題,本文中利用高壓手段、理論與實驗相結(jié)合的方法開展了典型含氮體系的高壓相變和穩(wěn)定性研究,包括疊氮化合物體系、N-H體系、Na-N體系以及納米限域體系,得到以下主要結(jié)論:1、利用高壓原位同步輻射技術(shù)、高壓原位Raman光譜和高壓原位紅外光譜實驗方法結(jié)合CALYPSO晶體結(jié)構(gòu)理論預(yù)測,研究了NH_4N_3的壓致相變行為,最高壓力達62.3 GPa。首次在室溫、15.8 GPa的溫和條件下獲得了由氮氮單鍵鍵合形成的螺旋孔道狀N-H聚合結(jié)構(gòu)(P212121),該聚合結(jié)構(gòu)卸壓時能夠保持到4GPa左右的低壓區(qū)。同時,我們還首次確定了低壓區(qū)高壓相Ⅰ的晶體結(jié)構(gòu)(單斜結(jié)構(gòu),P2/c)。2、利用粒子群搜索方法,開展了等比例的氮氫體系的高壓結(jié)構(gòu)預(yù)測,在0-180GPa內(nèi)預(yù)測出三種全新的聚合結(jié)構(gòu),即C2/c、N8H8-ring、Pc結(jié)構(gòu)。在這三種結(jié)構(gòu)中,所有的N原子通過N-N單鍵鍵合,N存在的缺陷和懸鍵由H原子飽和。它們的能量水平均低于已經(jīng)報道的P21/m結(jié)構(gòu),是更為穩(wěn)定的N-H聚合結(jié)構(gòu)。這些結(jié)構(gòu)可以通過N_2/H2混合物壓致合成,轉(zhuǎn)變壓力為10 GPa左右。特別是,我們發(fā)現(xiàn)N8H8-ring在常壓下依然保持亞穩(wěn)特性,這表明,如若在實驗上合成出這種聚合結(jié)構(gòu),極有希望將其穩(wěn)定到常壓條件。與此同時,這些聚合結(jié)構(gòu)都具有非常高的能量密度。3、采用基于粒子群算法的CALYPSO軟件,對Na-N體系進行了高壓變組分的結(jié)構(gòu)預(yù)測,除已知NaN3、Na3N外,還提出了一系列新奇的結(jié)構(gòu)(NaN_2、Na2N_2、NaN5)。更為重要的是,在16.9 GPa的壓力條件發(fā)現(xiàn)了高含氮量的NaN5聚合相,其中所有的N原子通過氮氮單鍵鍵合形成N5環(huán)。除了NaN5外,在51 GPa壓力以上還在NaN_2組分中發(fā)現(xiàn)了另一個具有之字鏈構(gòu)型的聚合結(jié)構(gòu)(Cmmm_II)。此外,熱力學穩(wěn)定性計算表明,壓力大于50 GPa時NaN3組分開始分解,分解產(chǎn)物為NaN_2和NaN5組分。4、利用基于第一性原理的DFT計算方法,開展了氮化硼納米管(BNNTs)限域聚合氮的穩(wěn)定性研究。研究表明,限域于BNNT(5,5)中的N8鏈聚合氮結(jié)構(gòu)能夠穩(wěn)定存在于常溫常壓條件,這是由于主客體結(jié)構(gòu)之間的電荷轉(zhuǎn)移造成的。對于其他管徑的BNNTs,稍加壓力即可使N8鏈聚合結(jié)構(gòu)穩(wěn)定。與其他限域模板相比,BNNTs具有極好的熱穩(wěn)定性,更為重要的是在超高壓高溫條件下具有極強的氮惰性。我們知道聚合氮的合成往往需要高壓甚至高溫高壓,BN納米管優(yōu)異的理化性質(zhì)為實驗上限域聚合氮的研究提供了可能。本課題的研究工作為聚合氮的常壓截獲提供了重要解決途徑。
[Abstract]:The polymerization is a new nitrogen network structure under high pressure dissociation of diatomic molecules formed by the nitrogen nitrogen bond formed. Because nitrogen triple bond (946 KJ/mol) and nitrogen bond (159 KJ/mol) there is a huge difference between can, when the polymerization depolymerization to molecular nitrogen nitrogen recovery will release enormous energy the energy density is 5 times more than the existing materials. Therefore, polymerization of nitrogen is high energy density materials a breakthrough of the traditional, has a broad application prospect in many fields. At present, there have been two kinds of polymerization nitrogen in the experiment confirmed the structure (cg-N structure and PL-N structure). These studies greatly stimulate the people of other nitrogen system research enthusiasm. High pressure phase transition of nitrogen containing system, and the existence of polymerization phase; by high-pressure combined means, whether the formation of high nitrogen compounds and the formation of new phase polymerization, by nano domain method; limit, can make polymerization Stable nitrogen to normal temperature and pressure, is a key scientific problem in current research in the field of polymerization nitrogen. In view of the above problems in science, high pressure by means of this paper, method of combination of theory and experiment was carried out on typical high-pressure nitrogen transformation and stability of the system, including the azide compound system, N-H system, Na-N system and nano limited the domain system, the main conclusions are as follows: 1, the use of high pressure in situ synchrotron radiation technology, high-pressure in situ Raman spectroscopy and infrared spectroscopy in situ high pressure experimental method combined with CALYPSO crystal structure theory predicts that NH_4N_3 study of the pressure induced phase transition behavior, up to 62.3 GPa. for the first time at room temperature, 15.8 GPa under mild conditions have shaped helical pores N-H formed by nitrogen bond polymerization (P212121), the structure of polymeric structure pressure relief to maintain a low pressure area to about 4GPa. At the same time, we first determined the low pressure area The crystal structure of high-pressure phase I (P2/c.2, monoclinic structure) using particle swarm search method, the prediction of high pressure hydrogen nitrogen ratio structure system, predict the aggregation structure, three kinds of new 0-180GPa in C2/c, N8H8-ring, Pc. In the three structures, the N atom through the N-N bond, N flaws and dangling bonds by H saturated. Their energy levels are lower than those of P21/m structure have been reported, is a more stable N-H polymerization structure. These structures can be synthesized by pressure induced N_2/H2 mixture, the transition pressure is about 10 GPa. In particular, we found that N8H8-ring remains metastability under atmospheric pressure, which indicates that if in the experiment to synthesize the polymeric structure, it is very hopeful to be stable to atmospheric conditions. At the same time, has a very high energy density.3 the aggregation structure, using CALYP based on particle swarm algorithm SO software, predict the structure of high voltage variable components of the Na-N system, in addition to the known NaN3, Na3N, also put forward a series of novel structures (NaN_2, Na2N_2, NaN5). More importantly, the high nitrogen content of NaN5 polymerization phase under the pressure of 16.9 GPa, all of them the N atom by nitrogen bond formation of N5 ring. In addition to NaN5, the pressure of 51 GPa are still NaN_2 components found in the polymeric structure of another zigzag chain configuration (Cmmm_II). In addition, calculations show that the thermodynamic stability, pressure is greater than 50 GPa NaN3 group started decomposition, decomposition the products are NaN_2 and NaN5 component.4, using the first principle calculation method based on the DFT, the boron nitride nanotubes (BNNTs) on the stability of confinement of polymerization nitrogen. The study shows that the confinement in BNNT (5,5) N8 in the polymerization of nitrogen structure can stably exist in normal temperature and pressure conditions, this is due to the subjective and objective The charge transfer between the body structure. For other diameter BNNTs, a little pressure can make N8 chain polymerization stable structure. Compared with other confinement template, BNNTs has excellent thermal stability, more important is to have strong nitrogen inert in ultra high pressure and high temperature conditions. We know that the synthesis of polymeric nitrogen often even the requirement of high temperature and pressure, can provide excellent physical and chemical properties of BN nanotubes on experimental limit domain aggregate nitrogen. This study provides an important way to solve the atmospheric interception of polymerization nitrogen.
【學位授予單位】:吉林大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:O631
【相似文獻】
相關(guān)期刊論文 前10條
1 ;5000噸單壓源六面體超高壓高溫成套設(shè)備[J];鍛壓機械;1977年04期
2 王光祖,翟小青,羅明,姚華嘯;鉸鏈式六面砧高壓高溫裝置[J];金剛石與磨料磨具工程;2000年06期
3 B. 馮普拉滕;必西;;近代超高壓技術(shù)(續(xù)五) 第六章 一種多活塞高壓高溫裝置[J];人工晶體;1977年02期
4 F.De Weerdt,J.Van Royen,陳鐘惠;高壓高溫處理的諾瓦鉆石的研究[J];寶石和寶石學雜志;2001年01期
5 ;單壓源六面體超高壓高溫裝置[J];無機材料學報;1975年02期
6 吳慶華;胡前庫;孫廣;邢學玲;韓海燕;;高壓高溫觸媒法合成硼-碳-氮化合物[J];河南理工大學學報(自然科學版);2010年04期
7 江錦春,李良彬,洪時明,鐘毓茂,張欣苑,韋建軍;從碳化硅和鐵體系合成金剛石[J];高壓物理學報;1997年02期
8 ;~.短停汽j⑿奘睍摰腲~點做法[J];石油煉制與化工;1960年07期
9 王宗烈 ,胡本權(quán) ,索正榮;新型兩面頂超高壓高溫裝置——凹形對頂砧裝置的研究與應(yīng)用[J];人工晶體;1980年01期
10 苗繼鵬,李莉萍,呂哲,車裕祿,宋彥彬,路大勇,許大鵬,劉宏建,蘇文輝,鄭熒光;La_(1-x)Na_xTiO_3的高壓高溫合成及譜學研究[J];高壓物理學報;2000年02期
相關(guān)會議論文 前1條
1 尚如相;;高溫高壓實驗及其在地學中的應(yīng)用[A];中國地質(zhì)科學院地質(zhì)研究所文集(18)[C];1988年
相關(guān)重要報紙文章 前1條
1 記者 嚴風華;滬東中華成功制造LNG船高壓高溫管[N];中國船舶報;2006年
相關(guān)博士學位論文 前1條
1 劉世杰;高壓下新型聚合氮結(jié)構(gòu)的設(shè)計及合成[D];吉林大學;2017年
相關(guān)碩士學位論文 前2條
1 張廣強;二氧化硅+碳納米管混合物在高壓高溫下的結(jié)構(gòu)轉(zhuǎn)化[D];吉林大學;2006年
2 樸云峰;ZrO_2摻雜Al_2O_3陶瓷的結(jié)構(gòu)和物性研究[D];吉林大學;2004年
,本文編號:1665062
本文鏈接:http://sikaile.net/kejilunwen/huaxue/1665062.html