磁性聚合物吸附樹脂的制備及其重金屬離子吸附性能研究
本文選題:重金屬離子 切入點:磁性納米粒子 出處:《成都理工大學》2017年碩士論文
【摘要】:本文采用改良共沉淀法制備磁性納米粒子,然后用硅烷偶聯(lián)劑KH570對磁性納米粒子進行表面修飾,并將KH570改性磁性納米粒子與功能性單體和聚乙烯基吡咯烷酮進行接枝共聚制備具有半互穿網絡結構的磁性聚合物重金屬離子吸附樹脂,考察了聚合反應參數(shù)和吸附條件對磁性聚合物吸附樹脂重金屬離子吸附性能的影響,采用多種現(xiàn)代表征手段對磁性聚合物吸附樹脂結構進行了表征,研究磁性聚合物吸附樹脂的重金屬離子吸附動力學和吸附熱力學,考察磁性聚合物染料吸附樹脂的解吸和循環(huán)再生利用性能,并初步探究磁性聚合物重金屬離子的吸附機理,主要研究結果如下:1、SEM表征顯示磁性聚合物具有三維網絡結構,樹脂表面不平整、具有大量的網孔和溝壑;VSM結果表明與磁性Fe_3O_4納米粒子相比,KH570改性磁性納米粒子和磁性聚合物吸附樹脂的磁化強度值均有所降低,但依舊具有很高的磁性,表現(xiàn)為超順磁性;磁性納米粒子分散液和KH570改性磁性納米粒子分散液均具有明顯的丁達爾現(xiàn)象和快速的磁響應性。2.XRD表征表明經過硅烷偶聯(lián)劑表面修飾和接枝聚合的磁性Fe_3O_4納米粒子的晶型結構均未發(fā)生改變;FTIR表明KH570成功對磁性Fe_3O_4納米粒子進行表面修飾,制備的磁性聚合物吸附樹脂具有目標結構,TGA表明磁性聚合物吸附樹脂具有較高的磁含量和熱穩(wěn)定性;。3、當引發(fā)劑用量為0.8%、交聯(lián)劑用量為0.2%、丙烯酸/丙烯酰胺質量比為60:40、丙烯酸中和度為70%、PVP含量為12%、KH570改性Fe_3O_4磁性納米粒子含量為20%時,制備的磁性聚合物吸附樹脂對Cu~(2+)吸附容量分別達到最大值。4、磁性聚合物吸附樹脂重金屬離子吸附容量隨吸附時間呈現(xiàn)先快速增加后增幅趨緩趨勢,60 min基本達到吸附平衡;隨著pH的增大,重金屬離子吸附容量先增后降;隨著重金屬離子初始濃度的增加,磁性聚合物吸附樹脂重金屬離子吸附容量呈先快速增大后趨緩的趨勢,磁性聚合物吸附樹脂重金屬離子的吸附容量隨溫度的升高而降低。5、磁性聚合物吸附樹脂重金屬離子Cu~(2+)、Pb~(2+)、Cd~(2+)吸附過程符合準二級動力學方程和Langmuir等溫吸附模型。6、磁性聚合物吸附樹脂對重金屬離子解吸速率較快,解吸60 min達到解吸平衡,磁性聚合物吸附樹脂Cu~(2+)、Pb~(2+)、Cd~(2+)的解吸率分別達到了99%、98%和95%以上,表明磁性聚合物吸附樹脂具有較好的解吸性能。經過5次循環(huán)使用,磁性聚合物吸附樹脂重金屬離子Cu~(2+)、Cd~(2+)、Pb~(2+)吸附容量分別達123.2 mg/g、90.2 mg/g和333.5 mg/g,分別達到重金屬離子第一次吸附容量的75.6%、74.1%和71%,表明磁性聚合物吸附樹脂具有較好的循環(huán)再生利用性能。
[Abstract]:In this paper, magnetic nanoparticles were prepared by modified coprecipitation method, and then modified by silane coupling agent KH570. KH570 modified magnetic nanoparticles were grafted with functional monomer and polyvinylpyrrolidone to prepare magnetic polymer heavy metal ion adsorption resin with semi-interpenetrating network structure. The effects of polymerization parameters and adsorption conditions on the adsorption properties of heavy metal ions of magnetic polymer adsorption resin were investigated. The structure of magnetic polymer adsorbed resin was characterized by various modern characterization methods. The adsorption kinetics and thermodynamics of heavy metal ions of magnetic polymer adsorption resin were studied. The desorption and recycling properties of magnetic polymer dye adsorption resin were investigated, and the adsorption mechanism of magnetic polymer heavy metal ion was preliminarily studied. The main results are as follows: SEM characterization shows that the magnetic polymer has a three-dimensional network structure, and the surface of the resin is uneven. Compared with the magnetic Fe_3O_4 nanoparticles, the magnetization of the modified magnetic nanoparticles and the adsorbed resin of the magnetic polymer is decreased, but the magnetic properties are still very high, showing superparamagnetism, compared with the magnetic Fe_3O_4 nanoparticles with a large number of meshes and grooves. Both magnetic nanoparticles dispersion and KH570 modified magnetic nanoparticles dispersion have obvious Dundar phenomenon and fast magnetic response. 2. XRD characterization shows that magnetic Fe_3O_4 nanoparticles modified by silane coupling agent and grafted polymerized are magnetic Fe_3O_4 nanoparticles. FTIR showed that KH570 successfully modified the surface of magnetic Fe_3O_4 nanoparticles. The magnetic polymer adsorption resin prepared has the target structure. TGA shows that the magnetic polymer adsorption resin has high magnetic content and thermal stability. When the initiator dosage is 0.8, the crosslinking agent dosage is 0.2, the mass ratio of acrylic acid to acrylamide is high. When the neutralization degree of acrylic acid is 70 and the content of PVP is 12 and the content of magnetic nanoparticles modified by KH 570 is 20, The adsorption capacity of magnetic polymer adsorbed resin on Cu~(2 reached the maximum value of .4, and the adsorption capacity of heavy metal ions of magnetic polymer adsorption resin increased rapidly first and then increased slowly with the adsorption time. The adsorption equilibrium was achieved for 60 min. With the increase of pH, the adsorption capacity of heavy metal ions first increased and then decreased, and with the increase of initial concentration of heavy metal ions, the adsorption capacity of heavy metal ions of magnetic polymer adsorbed resin increased rapidly and then slowed down. The adsorption capacity of heavy metal ions of magnetic polymer adsorbed resin decreased with the increase of temperature. The adsorption process of magnetic polymer adsorbed resin heavy metal ion Cu~(2 was in accordance with quasi second order kinetic equation and Langmuir isotherm adsorption model. The desorption rate of heavy metal ions by magnetic polymer adsorption resin is faster. The desorption equilibrium was achieved at 60 min, and the desorption rate of magnetic polymer adsorption resin (Cu~(2) was over 990.98% and 95%, respectively, which indicated that the adsorption resin had better desorption performance. The adsorption capacity of heavy metal ion Cu~(2 / CD ~ (2 +) is 123.2 mg / g ~ (90.2 mg/g) and 333.5 mg / g, respectively, which is 75.6% and 71.1% of the first adsorption capacity of heavy metal ions, respectively, indicating that the magnetic polymer adsorption resin has better recycling and recycling properties.
【學位授予單位】:成都理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:O647.3;TQ324.8
【參考文獻】
相關期刊論文 前10條
1 趙霞;李佳;;聚苯胺納米纖維/Fe_3O_4納米粒子磁性復合材料對水中痕跡量Pb~(2+)的吸附及快速分離性能[J];吉林大學學報(理學版);2015年05期
2 閆君芝;;KH570改性聚氨酯/丙烯酸酯乳液制備及應用[J];廣東化工;2015年09期
3 劉偉;楊琦;李博;陳海;聶蘭玉;;磁性石墨烯吸附水中Cr(Ⅵ)研究[J];環(huán)境科學;2015年02期
4 陳彩芳;沈偉良;申屠基康;林志華;;Pb~(2+)對泥蚶鰓、肝臟等組織結構的影響[J];水產學報;2014年07期
5 趙紅葉;魏俊平;喬麗云;;基于兩種復合納米材料的電化學生物傳感器研究[J];分析化學;2013年06期
6 Xiaolin Yu;Shengrui Tong;Maofa Ge;Lingyan Wu;Junchao Zuo;Changyan Cao;Weiguo Song;;Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals[J];Journal of Environmental Sciences;2013年05期
7 李建強;汪本高;;硅烷偶聯(lián)劑KH570對石英砂的表面改性工藝研究[J];非金屬礦;2013年02期
8 徐龍君;劉科;張福凱;;磁性活性炭處理含銅廢水[J];環(huán)境工程學報;2012年09期
9 任曉東;熊振湖;;磁性多壁碳納米管吸附水中重金屬離子的動力學與熱力學[J];天津城市建設學院學報;2012年02期
10 楊芳;王朝輝;陳跟平;;雙醛淀粉修飾的磁性Fe_3O_4制備及其除去水中Pb~(2+)的研究[J];化學工程師;2012年05期
相關博士學位論文 前2條
1 陳佑寧;基于ATRP技術制備的螯合樹脂及其吸附性能[D];西北大學;2014年
2 李雪;SDS膠團強化超濾處理含鎘—亞甲藍復合廢水的應用基礎研究[D];湖南大學;2011年
相關碩士學位論文 前10條
1 黃小明;磁性納米TiO_2復合材料的合成及其在水體污染修復中的應用[D];湖南大學;2016年
2 王玉波;硫化沉淀—鐵氧體法耦合技術處理重金屬廢水的試驗研究[D];鄭州大學;2016年
3 張景;復合MnO_2-Fe_3O_4吸附水中重金屬及其循環(huán)利用的研究[D];上海大學;2016年
4 章強;四環(huán)素和銅對小型魚類的生態(tài)毒性研究[D];華東師范大學;2015年
5 何興華;納米金屬氧化物基雜化材料的制備及其對重金屬離子的去除研究[D];蘭州大學;2015年
6 路翠萍;磁性聚苯乙烯基大孔樹脂的制備及對水溶液中金屬離子的吸附性能研究[D];蘭州理工大學;2014年
7 田曉媛;納濾/反滲透膜技術處理高鹽廢水及高濃度重金屬廢水的研究[D];湘潭大學;2014年
8 華蓉;磁性水凝膠的制備及其對重金屬的吸附研究[D];南京大學;2014年
9 陳希飛;鐵氧體原位共沉淀法處理核電廠放射性廢液技術研究[D];華東理工大學;2014年
10 任泳;改性殼聚糖磁性吸附劑的合成、表征及在吸附重金屬、染料方面的應用[D];華中科技大學;2014年
,本文編號:1661314
本文鏈接:http://sikaile.net/kejilunwen/huaxue/1661314.html