聚合物自清潔表面微熱壓成型的機(jī)理研究
本文選題:自清潔 切入點(diǎn):微熱壓成型 出處:《南昌大學(xué)》2017年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:換熱設(shè)備結(jié)垢會(huì)導(dǎo)致?lián)Q熱器傳熱效率降低和能耗增加,為此,換熱設(shè)備結(jié)垢的自清潔技術(shù)是實(shí)現(xiàn)其節(jié)能減排急需解決的關(guān)鍵技術(shù)問(wèn)題。荷葉出污泥而不染的自清潔仿生機(jī)理研究表明解決表面結(jié)垢問(wèn)題的的技術(shù)關(guān)鍵是通過(guò)在高能表面形成納米微觀結(jié)構(gòu)粗糙表面,這可以獲得類(lèi)似的仿生自清潔功能,而實(shí)現(xiàn)這一仿生自清潔目標(biāo)的技術(shù)關(guān)鍵是納米微觀結(jié)構(gòu)粗糙自清潔功能表面的加工成型技術(shù);谶@一工程背景,本文研究了納米微觀結(jié)構(gòu)粗糙自清潔功能表面微熱壓成型技術(shù),通過(guò)數(shù)值模擬研究了成型工藝參數(shù)、基片材料性能參數(shù)和納米微觀結(jié)構(gòu)粗糙自清潔功能表面形貌對(duì)微熱壓成型過(guò)程的影響規(guī)律,揭示了納米微觀結(jié)構(gòu)粗糙自清潔功能表面微熱壓成型機(jī)理,明晰了關(guān)鍵調(diào)控參數(shù),為納米微觀結(jié)構(gòu)粗糙自清潔功能表面微熱壓成型技術(shù)向以科學(xué)求質(zhì)量、以技術(shù)保成功的全流程綜合控制的工業(yè)化科學(xué)制造轉(zhuǎn)化奠定了科學(xué)的理論基礎(chǔ)和技術(shù)支撐。主要取得如下成果:基于納米微觀結(jié)構(gòu)粗糙自清潔功能表面微熱壓成型的黏彈性、屈服、軟化、硬化四個(gè)本質(zhì)力學(xué)變形特性和連續(xù)固相相變演化特點(diǎn),結(jié)合大溫度變化范圍大變形應(yīng)力應(yīng)變關(guān)系曲線實(shí)驗(yàn)結(jié)果,篩選出能預(yù)測(cè)相變演化影響的熱機(jī)械大變形黏彈性-塑性應(yīng)力應(yīng)變本構(gòu)模型;通過(guò)數(shù)值模擬,系統(tǒng)研究了工藝參數(shù)、基片材料特性和自清潔功能表面形貌對(duì)納米微觀結(jié)構(gòu)粗糙自清潔功能表面微熱壓成型過(guò)程的影響規(guī)律,研究表明基片彈性模量、熱壓成型溫度和壓力是影響制品品質(zhì)的關(guān)鍵調(diào)控參數(shù),熱壓成型壓力和成型變形應(yīng)力與熱壓成型溫度和模腔流道直徑呈負(fù)關(guān)聯(lián)關(guān)系,提高其熱壓成型溫度至跨越基片材料玻璃化轉(zhuǎn)變溫度,使基片材料處于黏彈性高彈態(tài),可使熱壓成型壓力和成型變形應(yīng)力趨于最小值,有利于成型制品脫模和避免基片熱壓成型斷裂損傷和變形失效;研究發(fā)現(xiàn)基片材料改變對(duì)熱壓成型充填過(guò)程影響主要體現(xiàn)在反映基片材料抗變形能力的機(jī)械性能指標(biāo)彈性模量,而基片材料固相連續(xù)相變演化是造成彈性模量急劇突降的主控因素;圓柱模型和圓錐臺(tái)模型熱壓成型過(guò)程對(duì)比分析研究表明,圓錐臺(tái)模型微熱壓成型壓力和變形應(yīng)力明顯大于圓柱模型微熱壓成型壓力和變形應(yīng)力,且隨著模型直徑增大而下降。
[Abstract]:Scaling in heat exchangers can reduce heat transfer efficiency and increase energy consumption. Self-cleaning technology of heat exchanger is the key technology to realize energy saving and emission reduction. The research on bionic mechanism of self-cleaning and non-dyeing of lotus leaf sludge shows that the key technology to solve the problem of surface scaling is to solve the problem of scaling on the surface. High energy surfaces form nano-microstructure rough surfaces, This can obtain similar bionic self-cleaning function, and the key technology to achieve this bionic self-cleaning goal is the processing and molding technology of nano-microstructure rough self-cleaning functional surface. In this paper, the micro-hot pressing technology of nano-microstructure rough self-cleaning functional surface was studied, and the process parameters were studied by numerical simulation. The influence of the properties of substrate material and the surface morphology of nano-structure rough self-cleaning function on the micro-hot pressing process was studied. The mechanism of micro-hot-pressing forming of nano-microstructure rough self-cleaning functional surface was revealed, and the key control parameters were clarified. In order to obtain the quality scientifically, the micro-hot pressing technology of nano-microstructure and self-cleaning function surface can be obtained. The scientific theory foundation and technical support have been established by the industrialized scientific manufacturing transformation controlled by the technology guarantee. The main achievements are as follows: the viscoelasticity of micro-hot pressing molding based on the nano-microstructure rough self-cleaning functional surface, The four essential mechanical deformation characteristics of yield, softening and hardening and the evolution characteristics of continuous solid phase transformation are combined with the experimental results of the stress-strain relation curve of large temperature range and large deformation. A viscoelastic-plastic stress-strain constitutive model for large deformation of thermal machinery was selected to predict the effect of phase transition evolution, and the process parameters were systematically studied by numerical simulation. The effect of substrate material characteristics and self-cleaning function surface morphology on the micro-hot pressing process of nano-structure rough self-cleaning functional surface was studied. The results showed that the elastic modulus of the substrate was improved. The temperature and pressure of hot pressing are the key control parameters that affect the quality of products. The forming pressure and deformation stress have a negative correlation with the temperature of hot pressing and the diameter of die cavity. By increasing the hot pressing temperature to the glass transition temperature across the substrate material and making the substrate material in a viscoelastic high elastic state, the forming pressure and deformation stress of the substrate can be minimized. It is found that the influence of the change of substrate material on the filling process is mainly reflected in the elastic modulus, which reflects the deformation resistance of the substrate material. The continuous phase transition evolution of substrate material is the main controlling factor for the sharp drop of elastic modulus, and the comparative analysis of hot pressing process between cylindrical model and conical table model shows that, The micro-hot pressing pressure and deformation stress of the cone model are obviously higher than those of the cylindrical model, and the pressure and deformation stress decrease with the increase of the diameter of the model.
【學(xué)位授予單位】:南昌大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:O631.11
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 丁維蓮;李現(xiàn)榮;張學(xué)歡;郭亞;張仲利;;超疏水材料表面的制備[J];廣東化工;2016年16期
2 劉萍;林益軍;艾陳祥;潘春躍;王健雁;唐愛(ài)東;;自清潔表面研究進(jìn)展[J];涂料工業(yè);2016年05期
3 劉鮮紅;郝紅;王斌;曹莉;;自清潔超疏水涂膜的研究與應(yīng)用[J];離子交換與吸附;2013年04期
4 李躍文;;塑料注塑成型技術(shù)新進(jìn)展[J];塑料工業(yè);2011年04期
5 賀永;傅建中;陳子辰;;微熱壓成型脫模缺陷分析及其脫模裝置[J];機(jī)械工程學(xué)報(bào);2008年11期
6 朱計(jì);類(lèi)彥威;張杰;;共注射成型技術(shù)及其發(fā)展[J];工程塑料應(yīng)用;2007年04期
相關(guān)博士學(xué)位論文 前2條
1 王會(huì)杰;超疏水功能界面的制備及應(yīng)用[D];中國(guó)科學(xué)技術(shù)大學(xué);2015年
2 范細(xì)秋;納米壓印及MEMS仿生功能表面制備的研究[D];華中科技大學(xué);2006年
相關(guān)碩士學(xué)位論文 前5條
1 方格;聚合物微熱壓成型及其微納復(fù)合結(jié)構(gòu)制備[D];鄭州大學(xué);2016年
2 楊振洲;聚合物微結(jié)構(gòu)平板熱壓印成型工藝研究[D];北京化工大學(xué);2015年
3 章婷;聚合物的微熱壓成型關(guān)鍵技術(shù)研究[D];浙江大學(xué);2012年
4 劉婷婷;面向微光學(xué)元件加工的納米壓印系統(tǒng)設(shè)計(jì)及過(guò)程仿真[D];哈爾濱工業(yè)大學(xué);2010年
5 楊榮;納米壓印技術(shù)制作微納流體芯片及其應(yīng)用[D];復(fù)旦大學(xué);2010年
,本文編號(hào):1648452
本文鏈接:http://sikaile.net/kejilunwen/huaxue/1648452.html