基于光腔衰蕩光譜測(cè)定玻爾茲曼常數(shù)
發(fā)布時(shí)間:2018-03-09 03:34
本文選題:溫度 切入點(diǎn):溫標(biāo) 出處:《中國(guó)科學(xué)技術(shù)大學(xué)》2017年博士論文 論文類型:學(xué)位論文
【摘要】:分子光譜是研究分子結(jié)構(gòu)、內(nèi)部能量布居、以及分子間相互作用最重要的手段之一。近一個(gè)世紀(jì)以來,隨著激光技術(shù)和分子光譜探測(cè)技術(shù)的發(fā)展,光頻梳的發(fā)明等,使得分子光譜在高精密測(cè)量方面具有越來越多的應(yīng)用:包括驗(yàn)證基本物理定律和對(duì)稱性,以及測(cè)量精密物理常數(shù),比如精細(xì)結(jié)構(gòu)常數(shù)α、玻爾茲曼常數(shù)k_B等等。本論文的主要工作是通過自主發(fā)展并搭建的高精密光腔衰蕩光譜(Cavity Ring-Down Spectroscopy)實(shí)驗(yàn)裝置,利用頻率鎖定以及溫度控制技術(shù),示范進(jìn)行高精密的分子光譜頻率測(cè)量,并用于測(cè)定玻爾茲曼常數(shù)。本論文的主要內(nèi)容包括以下幾部分,第一章簡(jiǎn)要介紹了測(cè)量玻爾茲曼常數(shù)k_B的背景,以及目前國(guó)際上其他研究組主要采用的一些測(cè)量方法,比如聲速法、介電常數(shù)發(fā)、熱噪聲法和多普勒展寬方法等,特別是本論文將采用的基于光腔衰蕩光譜和多普勒展寬方法測(cè)定玻爾茲曼常數(shù)的原理。本章還介紹了光腔衰蕩光譜方法的原理,以及對(duì)k_B測(cè)量有影響的各種加寬因素,包括碰撞加寬、渡越時(shí)間加寬、飽和加寬等等。第二章詳細(xì)介紹了實(shí)驗(yàn)裝置的設(shè)計(jì)與搭建,包括樣品腔的機(jī)械設(shè)計(jì)與溫度控制,激光頻率的鎖定與掃描等等。為了準(zhǔn)確測(cè)定玻爾茲曼常數(shù),我們不斷改進(jìn)實(shí)驗(yàn)方案,并且通過實(shí)際飽和吸收光譜的測(cè)量驗(yàn)證了實(shí)驗(yàn)方案的可行性。最終發(fā)展的實(shí)驗(yàn)方案不僅可以用于玻爾茲曼常數(shù)的測(cè)定,可能還可以用于其它高精密分子光譜測(cè)量。第三章介紹利用我們發(fā)展的三種實(shí)驗(yàn)設(shè)計(jì)方案所測(cè)量的結(jié)果與分析,對(duì)玻爾茲曼常數(shù)進(jìn)行了初步測(cè)量結(jié)果與分析;同時(shí)發(fā)展了可用于分子蘭姆凹陷測(cè)定的實(shí)驗(yàn)方法,并實(shí)現(xiàn)了精度達(dá)到亞kHz的CO分子飽和吸收光譜頻率測(cè)定。最后,對(duì)于進(jìn)一步的改進(jìn)實(shí)驗(yàn)方法,實(shí)現(xiàn)高精密的k_B測(cè)定以及其它相關(guān)分子精密測(cè)量進(jìn)行了討論。
[Abstract]:Molecular spectrum is one of the most important means to study molecular structure, internal energy distribution and intermolecular interaction. In the last century, with the development of laser technology and molecular spectrum detection technology, the invention of optical frequency comb, etc. The molecular spectrum has more and more applications in high-precision measurement, including the verification of basic physical laws and symmetries, and the measurement of precise physical constants. For example, fine structure constant 偽, Boltzmann constant KB and so on. The main work of this thesis is to use frequency locking and temperature control technology through the self-developed and built high-precision optical cavity Ring-Down spectroscopy-based device. High precision molecular spectral frequency measurement is demonstrated and used to measure Boltzmann constant. The main contents of this paper include the following parts. The first chapter briefly introduces the background of the measurement of Boltzmann constant KSP B. And some of the main measurement methods used by other international research groups at present, such as sound velocity method, dielectric constant generation, thermal noise method and Doppler broadening method, etc. In particular, the principle of measurement of Boltzmann constant based on optical cavity ring-down spectrum and Doppler broadening method will be adopted in this paper. The principle of optical cavity ring-down spectrum method and various broadening factors affecting the measurement of KSP B are also introduced in this chapter. The second chapter introduces the design and construction of the experimental device in detail, including the mechanical design and temperature control of the sample cavity. Laser frequency locking, scanning and so on. In order to determine Boltzmann constant accurately, we constantly improve the experimental program. The feasibility of the experimental scheme is verified by the measurement of the actual saturated absorption spectrum. The developed experimental scheme can be used not only for the determination of Boltzmann constant, but also for the measurement of the Boltzmann constant. It may also be used for other high-precision molecular spectrometric measurements. In Chapter 3, the results and analysis of Boltzmann constant are presented and analyzed by using three experimental design schemes developed by us. At the same time, the experimental method which can be used for the determination of molecular Lamb sag is developed, and the saturated absorption spectrum frequency of CO with accuracy up to sub-#en0# is realized. Finally, for the further improvement of the experimental method, The realization of high precision Kappa B measurement and other related molecular precision measurements are discussed.
【學(xué)位授予單位】:中國(guó)科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:O657.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 何夢(mèng)州;;玻璃聚光腔激光內(nèi)反射鏡鍍制工藝[J];電鍍與精飾;1992年04期
2 ;橢圓柱型腔的銑削加工[J];航空工藝技術(shù);1976年12期
3 白志明,王雅茹;光腔中光子數(shù)態(tài)的獲取[J];河北輕化工學(xué)院學(xué)報(bào);1996年04期
4 李仁興,施江瀾;高漫反射陶瓷激光聚光腔的研制[J];中國(guó)陶瓷工業(yè);2004年06期
5 閻文斌;;微量氣體定量分析的新方法:光腔衰蕩光譜[J];低溫與特氣;2007年01期
6 林宇巍;;光腔衰蕩光譜技術(shù)及其在痕量氣體分析中的應(yīng)用[J];低溫與特氣;2011年01期
7 白志明,王雅如;光腔中光子數(shù)態(tài)的形成[J];河北輕化工學(xué)院學(xué)報(bào);1997年04期
8 施江瀾,陳玉華;高漫反射陶瓷聚光腔的注凝成形[J];陶瓷研究;2002年04期
9 趙東鋒;秦成兵;張群;陳e,
本文編號(hào):1586842
本文鏈接:http://sikaile.net/kejilunwen/huaxue/1586842.html
最近更新
教材專著