磷酸銅微納米材料的制備及其光熱轉(zhuǎn)換性能的研究
本文選題:磷酸銅 切入點:光熱轉(zhuǎn)換 出處:《青島科技大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:光熱轉(zhuǎn)換材料是能夠?qū)⒐饽苻D(zhuǎn)換為熱能的材料,目前主要應(yīng)用于太陽能光熱轉(zhuǎn)換及腫瘤光熱治療兩個領(lǐng)域。由于可見光譜區(qū)和紅外光譜區(qū)的能量分別占據(jù)了太陽光總輻射能量的約50%和43%,且可見光與近紅外光對生物組織的穿透能力更強,更容易實現(xiàn)深層癌組織的高效殺傷,因此能夠響應(yīng)可見光-近紅外光的光熱轉(zhuǎn)換材料是這兩個領(lǐng)域的研究熱點;谶^渡金屬銅離子3d電子的d-d躍遷,本文設(shè)計并成功制備了一種新型的可見光-近紅外光響應(yīng)的磷酸銅(copper phosphates,Cu POs)光熱轉(zhuǎn)換材料,該材料能夠強烈吸收400-1200 nm波段的可見光和近紅外光能量,并將該波段的光能高效轉(zhuǎn)換為熱能。在此基礎(chǔ)上,本文對所制備的磷酸銅光熱轉(zhuǎn)換材料進行了光熱轉(zhuǎn)換效率的測試及光熱轉(zhuǎn)換機理的研究,并探索了該材料在太陽能光熱海水淡化和腫瘤光熱治療中的應(yīng)用。具體研究內(nèi)容主要包括以下幾個方面:1、磷酸銅新型光熱轉(zhuǎn)換材料的制備、光熱轉(zhuǎn)換性能及機理研究。(1)通過水熱法和溶劑熱法合成了形貌分別為片狀、花球狀和球狀的三種磷酸銅。其中片狀磷酸銅為厚度約2 nm、長度和寬度幾十到幾百納米不等的薄片;花球狀磷酸銅為直徑約3-5μm,具有多級結(jié)構(gòu)的花球狀微米顆粒;球狀磷酸銅為粒徑140-160 nm的球形納米顆粒。(2)使用波長為808 nm的近紅外光對上述三種不同形貌的磷酸銅材料進行了光熱轉(zhuǎn)換性能的測試,計算了其對808 nm近紅外光的光熱轉(zhuǎn)換效率。研究了微觀形貌對所制備材料光熱轉(zhuǎn)換性能的影響,結(jié)果表明,這三種不同形貌的磷酸銅材料對808 nm近紅外光的光熱轉(zhuǎn)換效率?1分別為30.85%、41.8%和34.6%,其中花球狀磷酸銅由于具有多級結(jié)構(gòu),光線入射后能夠在納米片“花瓣”之間多次反射、折射,從而表現(xiàn)出比片狀和球狀磷酸銅微納米材料更加優(yōu)異的光吸收能力和光熱轉(zhuǎn)換性能。(3)通過對磷酸銅微納米材料固體漫反射光譜的研究,計算了磷酸銅的禁帶寬度,提出了基于Cu~(2+)中3d電子d-d躍遷的光熱轉(zhuǎn)換機理。2、磷酸銅光熱轉(zhuǎn)換材料在太陽能光熱海水淡化中的應(yīng)用研究。(1)選取對808 nm近紅外光光熱轉(zhuǎn)換效率最高的花球狀磷酸銅與低表面能材料聚二甲基硅氧烷(polydimethylsiloxane,PDMS)進行復(fù)合,制得具有自漂浮性能的Cu POs-PDMS光熱膜片。借助砂紙的粗糙表面,進一步提高了光熱膜片的憎水性,制得與水的表觀接觸角為124.0o的Cu POs-PDMS膜片,實現(xiàn)了該光熱膜片在水面的自漂浮,成功地將光照下磷酸銅所產(chǎn)生的熱量集中于空氣-水界面處,進而加速了水分在空氣-水界面處的蒸發(fā)。(2)以質(zhì)量分數(shù)為3.5%的Na Cl水溶液為模擬海水,使用功率密度為1000W/m2的模擬太陽能光源,研究了Cu POs-PDMS光熱膜片對水蒸發(fā)速率的影響。結(jié)果表明,在功率密度為1000 W/m2的模擬太陽能光源照射條件下,Cu POs質(zhì)量分數(shù)為40%的有孔Cu POs-PDMS膜片能夠?qū)⒛M海水的水蒸發(fā)速率提升至1.01 kg·m-2·h-1,光熱轉(zhuǎn)換效率?2達63.6%,是未使用光熱材料條件下的1.71倍,充分表明Cu POs-PDMS光熱膜片能夠有效提高太陽能光熱海水淡化的效率。3、磷酸銅光熱轉(zhuǎn)換材料在腫瘤光熱治療中的應(yīng)用研究。以粒徑較小、易于實現(xiàn)細胞吞噬的球狀磷酸銅納米顆粒為光熱治療劑,以人宮頸癌細胞(HeLa細胞)為細胞模型,研究了該材料在腫瘤光熱治療中的應(yīng)用。結(jié)果表明,將HeLa細胞與濃度為125μg/m L的球狀磷酸銅共培養(yǎng)2 h,并經(jīng)功率密度為0.1 W/cm2和0.3 W/cm2的808 nm激光照射5 min后,細胞存活率可由光照前的86.9%分別下降至77%和40%左右,說明球狀磷酸銅作為光熱治療劑能夠?qū)?08 nm近紅外光的能量有效轉(zhuǎn)換為熱量來殺死癌細胞。4、磷酸銅微納米材料的過氧化物酶模擬活性研究。本文發(fā)現(xiàn)所制備的磷酸銅微納米材料除了具有優(yōu)異的光熱轉(zhuǎn)換性能以外,還具有過氧化物酶模擬活性。(1)以3,3',5,5'-四甲基聯(lián)苯胺(TMB)-H_2O_2反應(yīng)體系為模型,研究了磷酸銅微納米材料的過氧化物酶模擬活性。結(jié)果發(fā)現(xiàn),所制備的磷酸銅材料能夠如天然過氧化物酶一樣催化TMB與H_2O_2之間的氧化還原反應(yīng),加速反應(yīng)體系的顯色反應(yīng),證明該材料具有過氧化酶模擬活性。pH值對磷酸銅的模擬酶活性具有顯著影響,當反應(yīng)介質(zhì)的pH約為3.2時,其模擬酶活性最強。(2)利用磷酸銅的過氧化物酶模擬活性,以磷酸銅微納米材料代替天然過氧化物酶為催化劑,實現(xiàn)了水溶性導(dǎo)電聚噻吩(PEDOT)的仿酶綠色合成。(3)采用魯米諾化學(xué)發(fā)光法,研究了磷酸銅微納米材料具有過氧化物模擬酶的機理。結(jié)果表明,只有在H_2O_2存在的條件下,磷酸銅才能夠使得魯米諾產(chǎn)生化學(xué)發(fā)光,這說明磷酸銅是通過催化H_2O_2分解產(chǎn)生可氧化魯米諾的氧自由基,進而表現(xiàn)出過氧化物酶模擬活性的。(4)利用磷酸銅的過氧化物酶模擬酶活性,研究了磷酸銅在氧化應(yīng)激癌癥治療中的應(yīng)用。HeLa細胞在與125μg/m L的磷酸銅納米球共培養(yǎng)2 h后其細胞增殖率約為86.9%,而在繼續(xù)與1.25 m M的H_2O_2共培養(yǎng)2 h后,其細胞增殖率下降為49.8%,說明HeLa細胞吞噬的磷酸銅納米顆粒能夠在細胞內(nèi)通過分解H_2O_2產(chǎn)生氧自由基的方式來有效殺傷癌細胞。該方法與光熱治療聯(lián)用,可進一步提高對癌細胞的殺傷效率。
[Abstract]:The conversion material is able to convert light energy to heat the material, mainly used in solar energy conversion and tumor photothermal therapy in two areas. Due to the visible region of the spectrum and infrared region energy respectively occupy the total solar radiation energy of about 50% and 43%, and the visible light and near infrared spectra of biological tissue penetrating ability a stronger, more easily achieve efficient killing deep cancer tissue and therefore can respond to visible and near infrared photothermal conversion material is a hot research field. The two D-D transition metal 3D based on the design of copper phosphate and a visible model was prepared successfully by near infrared response the (copper phosphates, Cu POs) the conversion material, the material can strongly absorb 400-1200 nm visible light and near infrared energy, and the energy band, is converted to heat. On this basis, the copper phosphate prepared by photothermal conversion material of photothermal conversion efficiency and testing mechanism of photothermal conversion and explored the application of the material in the solar thermal desalination and cancer photothermal therapy. The specific research includes the following aspects: 1, copper phosphate conversion model material preparation, thermal properties and mechanism research. (1) by hydrothermal and solvothermal synthesis were respectively three phosphoric acid copper flake, curd like and spherical. The sheet copper phosphate for thickness of about 2 nm, slice length and width of tens to hundreds of nanometers; copper phosphate. The bouquet is about 3-5 m in diameter, with a multi-level structure of ball flower shaped micron particles; spherical copper phosphate for spherical nanoparticles with particle size of 140-160 nm. (2) the use of near infrared wavelength is 808 nm for the three kinds of different morphologies of the copper phosphate Materials for the photothermal conversion performance test, the calculation of 808 nm near-infrared photothermal conversion efficiency. Study the effect of microstructure on the prepared materials, photothermal conversion performance results show that the three different morphologies of copper phosphate materials of 808 nm near-infrared photothermal conversion efficiency was 30.85%? 1. 41.8% and 34.6%, including copper phosphate with globular flower like hierarchical structure, the incident light can in the nano petal between multiple reflection, refraction, thus showing convergence ability and photothermal conversion absorption properties than flake and spheroidal copper phosphate micro nano materials with more excellent light. (3) through the research on micro nano copper phosphate solid diffuse reflectance spectra, the band gap copper phosphate was calculated based on Cu~ (2+) 3D D-D electronic transitions of photothermal conversion mechanism of.2 copper phosphate conversion material in solar thermal desalination The application of research. (1) the selection of the 808 nm near infrared photothermal conversion efficiency of the highest ball flower shaped copper phosphate and low surface energy materials two polydimethylsiloxane (polydimethylsiloxane, PDMS) compound, prepared with self floating performance Cu POs-PDMS rough surface with sandpaper. Thermal diaphragm, further improves the hydrophobicity of thermal the diaphragm was prepared with water, the apparent contact angle is Cu POs-PDMS 124.0o to realize the self diaphragm, the diaphragm floating on the surface of the heat, successfully light copper phosphate heat generated by the focus on the air / water interface, and then accelerate the evaporation of moisture in the air / water interface. (2) with the mass fraction of water Na 3.5% Cl solution for simulated seawater, using power density for simulation of solar 1000W/m2 light source, the effects of Cu POs-PDMS on thermal diaphragm water evaporation rate. The results show that the power density of 1000 W/m2 Simulation of solar light irradiation under the condition of Cu, the mass fraction of POs was 40% Cu POs-PDMS with a hole in the diaphragm can simulate the water evaporation rate will increase water to 1.01 kg - m-2 - H-1, the thermal efficiency of up to 63.6%? 2, is 1.71 times without the use of photothermal material under the condition of Cu shows that POs-PDMS can effectively improve the thermal diaphragm the efficiency of.3 solar thermal desalination, application of copper phosphate conversion material in tumor photothermal therapy. With smaller particle size, easy to realize the phagocytosis of globular phosphate copper nanoparticles as photothermal therapeutic agent in human cervical cancer cells (HeLa cells) cell model, studies the application of the material in tumor photothermal therapy in. The results showed that the HeLa cells and the concentration of spherical copper phosphate 125 g/m L were cultured for 2 h, and the power density of 808 nm laser irradiation of 0.1 W/cm2 and 0.3 W/cm2 after 5 min, the cell survival rate by Light in front of 86.9% decreased to 77% and 40%, indicating the spherical copper phosphate as photothermal therapeutic agent can 808 nm near infrared energy efficient conversion of heat to kill cancer cells.4, peroxidase activity of simulated copper phosphate micro nano materials. In this paper, it was found that copper phosphate prepared by micro nano materials has excellent photo thermal conversion properties, but also has simulated peroxidase activity. (1) 3,3', 5,5'- four methyl benzidine (TMB) -H_2O_2 reaction system as a model of peroxidase copper phosphate micro nano materials simulation activity. The results showed that the copper phosphate material prepared to oxidation such as natural peroxidase TMB and H_2O_2 like catalytic reduction reaction, accelerate the chromogenic reaction reaction system, proved that the peroxidase activity of.PH material simulation simulation on the enzyme activity of copper phosphate has significant effect with, When the reaction medium pH is about 3.2, its strongest simulation activity. (2) simulated by peroxidase activity copper phosphate, phosphate copper micro nano materials to replace natural peroxidase as catalyst, the water soluble conducting polythiophene (PEDOT) biomimetic synthesis of green (3) by Lumino chemical. Study on the chemiluminescence method, copper phosphate micro nano materials with mechanism of mimetic peroxidase. The results showed that only in the presence of H_2O_2, copper phosphate can make Lumino produce chemiluminescence, which is catalyzed by copper phosphate H_2O_2 decomposition to produce oxygen free radicals can oxidize Lumino, and then demonstrate the simulation of peroxidase activity. (4) simulated enzyme activity using peroxidase copper phosphate, were studied using.HeLa cell copper phosphate on oxidative stress in the treatment of cancer in copper phosphate nanoparticles and 125 g/m L 2 h after co culture of the fine The cell proliferation rate is about 86.9%, while in the co cultured with 1.25 m M to 2 H_2O_2 after h, the cell proliferation rate decreased to 49.8%, indicating phosphate copper nanoparticles of HeLa cell phagocytosis in cells through the decomposition of H_2O_2 can produce oxygen free radicals to effectively kill cancer cells. The method and thermal therapy use, can further enhance the cancer cell killing efficiency.
【學(xué)位授予單位】:青島科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O643.36
【參考文獻】
相關(guān)期刊論文 前10條
1 徐磊;夏海平;胡敏杰;;納米硫化銅近紅外吸收材料[J];光學(xué)學(xué)報;2013年01期
2 李志遠;李家方;;金屬納米結(jié)構(gòu)表面等離子體共振的調(diào)控和利用[J];科學(xué)通報;2011年32期
3 謝光明;;太陽能光熱轉(zhuǎn)換的核心材料——光譜選擇性吸收涂層的研究與發(fā)展過程[J];新材料產(chǎn)業(yè);2011年05期
4 熊濤;何美鳳;;光熱轉(zhuǎn)換材料及太陽能熱水器的現(xiàn)狀和發(fā)展方向[J];材料導(dǎo)報;2010年19期
5 黃柏標;王澤巖;王朋;鄭昭科;程合鋒;;光催化材料微結(jié)構(gòu)調(diào)控的研究[J];中國材料進展;2010年01期
6 馬占芳;田樂;邸靜;丁騰;;基于金納米棒的生物檢測、細胞成像和癌癥的光熱治療[J];化學(xué)進展;2009年01期
7 康艷霞;張賀龍;;腫瘤熱療機制的研究進展[J];現(xiàn)代腫瘤醫(yī)學(xué);2008年03期
8 王化寧;包國強;賴大年;;腫瘤熱療的臨床應(yīng)用及研究進展[J];現(xiàn)代腫瘤醫(yī)學(xué);2006年02期
9 張耀明,鄒寧宇;海水淡化技術(shù)與太陽能利用[J];中國工程科學(xué);2005年11期
10 姜鵬,生夢飛,王義善,李鼎九;熱療治療食管癌研究進展[J];中國腫瘤臨床與康復(fù);2005年05期
相關(guān)博士學(xué)位論文 前1條
1 陳志莉;熱法太陽能海水淡化技術(shù)及系統(tǒng)研究[D];重慶大學(xué);2009年
相關(guān)碩士學(xué)位論文 前1條
1 崔夏菁;太陽能海水淡化系統(tǒng)運行特性研究[D];大連理工大學(xué);2012年
,本文編號:1560927
本文鏈接:http://sikaile.net/kejilunwen/huaxue/1560927.html