介孔烷基有機(jī)鈦雜化材料的制備及光催化性能研究
發(fā)布時(shí)間:2018-02-01 19:21
本文關(guān)鍵詞: 介孔材料 烷基功能化 二氧化鈦 CH_3-TiO_2 C_6H_5CH_2-TiO_2 出處:《長(zhǎng)春工業(yè)大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:近幾年來(lái)大規(guī)模的霧霾空氣等環(huán)境污染不時(shí)爆發(fā),保護(hù)環(huán)境也越加緊迫、治理環(huán)境污染刻不容緩。印染工業(yè)生產(chǎn)過(guò)程造成的染料污染,是水體污染的重要原因之一。水中的污染物能夠吸收光線,降低水的可見度,并且消耗水中的氧氣,造成水中缺少氧氣。本文選取染料羅丹明B(RhB)作為代表性的染料目標(biāo)化合物,以進(jìn)行光催化降解測(cè)試。(1)以乙醚(Et_2O)為溶劑,以鹵代烴CH_3I與鎂屑(Mg)反應(yīng),制備格式試劑CH3MgI。在低溫條件下,控制格氏試劑CH3MgI與無(wú)機(jī)鈦試劑(TiCl4)反應(yīng),得到有機(jī)鈦前驅(qū)體(CH3TiCl3)溶液;利用水解共縮合技術(shù),得到基于甲基基團(tuán)的介孔有機(jī)鈦CH3-TiO2雜化材料。通過(guò)傅里葉紅外FT-IR表征介孔有機(jī)鈦CH3-TiO2雜化材料中甲基官能團(tuán)的存在;利用氮?dú)馕?脫附技術(shù)、X射線粉末衍射(XRD)、透射電鏡(TEM)、掃描電鏡(SEM)、紫外可見漫反射光譜(UV/Vis-NIR)等技術(shù),表征介孔甲基有機(jī)鈦CH3-TiO2雜化材料的表面物理化學(xué)性質(zhì)、形貌、光吸收性能等。結(jié)果表明:所制備的CH3-TiO2是一種介孔材料。以染料羅丹明B(RhB)為目標(biāo)降解底物,介孔甲基有機(jī)鈦CH3-TiO2雜化材料為降解催化劑,在模擬太陽(yáng)光的條件下來(lái)探究介孔甲基有機(jī)鈦CH3-TiO2雜化材料的光催化活性。與無(wú)機(jī)TiO2材料相比,介孔有機(jī)鈦CH3-TiO2雜化材料的光催化活性更好。(2)以四氫呋喃(THF)為溶劑,以鹵代烴C_6H_5CH_2Cl與鎂屑(Mg)反應(yīng),制備格式試劑C6H5CH2MgCl。在低溫條件下,按照格氏試劑C6H5CH2MgCl與無(wú)機(jī)鈦試劑TiCl4與Ti(iO-Pr)4的摩爾比為4:1:3來(lái)控制反應(yīng),得到有機(jī)鈦前驅(qū)體(C6H5CH2Ti(iO-Pr)3);利用水解共縮合結(jié)合溶劑揮發(fā)誘導(dǎo)自組裝技術(shù)(EISA),制備基于芐基基團(tuán)的介孔有機(jī)鈦BnTiO雜化材料。通過(guò)各種表征手段,如核磁共振技術(shù)確定芐基有機(jī)鈦前驅(qū)體(C6H5CH2Ti(iO-Pr)3),傅里葉紅外FT-IR表征介孔有機(jī)鈦BnTiO雜化材料中有機(jī)基團(tuán)芐基的引入。利用氮?dú)馕?脫附技術(shù)、X射線粉末衍射(XRD)、透射電鏡(TEM)、掃描電鏡(SEM)、紫外可見漫反射光譜(UV/Vis-NIR)等技術(shù),表征介孔材料有機(jī)鈦BnTiO雜化材料的外貌物理化學(xué)性質(zhì)、形貌、光吸收性能等。結(jié)果表明:經(jīng)過(guò)水解縮合得到的BnTiO(C6H5CH2-TiO2)是一種介孔材料。并且引入芐基后紫外可見漫反射光譜吸收范圍拓展到可見光區(qū)。以染料羅丹明B(RhB)為目標(biāo)降解底物,介孔芐基有機(jī)鈦BnTiO雜化材料為降解催化劑,在模擬太陽(yáng)光的條件下來(lái)探究介孔芐基有機(jī)鈦BnTiO雜化材料的光催化活性。與無(wú)機(jī)TiO2材料相比,介孔芐基有機(jī)鈦BnTiO雜化材料的光催化活性更好。
[Abstract]:In recent years large-scale environmental pollution such as haze air and other environmental pollution erupts from time to time and the protection of the environment is more and more urgent so it is urgent to control the environmental pollution. The dye pollution caused by printing and dyeing industry production process is urgent. Pollutants in water can absorb light, reduce the visibility of water, and consume oxygen in water. In this paper, the dye Rhodamine Bhh Rh B) was selected as the representative dye target compound for photocatalytic degradation test. The standard reagent Ch _ 3MgI was prepared by the reaction of halogenated hydrocarbon CH_3I with magnesium chip Mg.The reaction of Grignard reagent CH3MgI with inorganic titanium reagent (TiCl _ 4) was controlled at low temperature. The organic titanium precursor (Ch _ 3TiCl _ 3) solution was obtained. The hydrolysis co-condensation technique was used. The mesoporous organic titanium CH3-TiO2 hybrid material based on methyl group was obtained. The existence of methyl functional group in mesoporous organic titanium CH3-TiO2 hybrid material was characterized by Fourier transform infrared FT-IR. Nitrogen adsorption-desorption techniques such as X-ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and UV-Vis diffuse reflectance spectroscopy (UV / Vis-NIRs) were used. The surface physicochemical properties and morphology of mesoporous organic titanium (CH3-TiO2) hybrid materials were characterized. The results showed that the prepared CH3-TiO2 was a mesoporous material and the dye Rhodamine was used as the target substrate for degradation. Mesoporous organotitanium CH3-TiO2 hybrid material was used as the degradation catalyst. The photocatalytic activity of mesoporous organotitanium (CH3-TiO2) hybrid materials was investigated under simulated solar light. Compared with inorganic TiO2 materials. The mesoporous organic titanium (CH3-TiO2) hybrid material has better photocatalytic activity. The tetrahydrofuran (THF) is used as the solvent, and the halide C _ 6H _ 5CH2Cl is used to react with mg / mg. The standard reagent C6H5CH2MgCl. was prepared at low temperature. The reaction was controlled by the molar ratio of Grignard reagent C6H5CH2MgCl and inorganic titanium reagent TiCl4 to Ti(iO-Pr)4 of 4: 1: 3. The organic titanium precursor, C6H5CH2TiTiOPRO3, was obtained. The mesoporous organic titanium (BnTiO) hybrid materials based on benzyl group were prepared by hydrolysis co-condensation and solvent volatilization induced self-assembly technique. For example, the benzyl organic titanium precursor, C6H5CH2TiTiO-Pr3, was determined by NMR. Fourier transform infrared (FTIR) FT-IR was used to characterize the introduction of organic benzyl groups in mesoporous BnTiO hybrid materials. X-ray powder diffraction (XRD) was performed by nitrogen adsorption-desorption technique. Transmission electron microscopy (TEM), scanning electron microscopy (SEM) and diffuse reflectance spectroscopy (UV / Vis-NIR). The physical and chemical properties and morphology of mesoporous organic titanium BnTiO hybrid materials were characterized. The results show that the BnTiON C6H5CH2-TiO2 was obtained by hydrolysis and condensation. It is a kind of mesoporous material, and the absorption range of UV-Vis diffuse reflectance spectrum is extended to the visible region after the introduction of benzyl. Mesoporous benzyl organic titanium (BnTiO) hybrid material was used as the degradation catalyst. The photocatalytic activity of mesoporous benzyl organic titanium (BnTiO) hybrid materials was investigated under simulated solar light. Compared with inorganic TiO2 materials. Mesoporous benzyl organic titanium (BnTiO) hybrid materials have better photocatalytic activity.
【學(xué)位授予單位】:長(zhǎng)春工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O643.36
【參考文獻(xiàn)】
相關(guān)期刊論文 前1條
1 Jiao He;Guoli Zi;Zhiying Yan;Yongli Li;Jiao Xie;Deliang Duan;Yongjuan Chen;Jiaqiang Wang;;Biogenic C-doped titania templated by cyanobacteria for visible-light photocatalytic degradation of Rhodamine B[J];Journal of Environmental Sciences;2014年05期
,本文編號(hào):1482671
本文鏈接:http://sikaile.net/kejilunwen/huaxue/1482671.html
最近更新
教材專著