低溫等離子體等技術(shù)降解水中氯苯酚的研究
[Abstract]:The waste water containing chlorophenol compounds is one of the most common and abundant wastewater, which has high biotoxicity and enrichment. It is difficult to degrade and accumulate easily in vivo, which poses a great threat to the safety of organisms. The traditional physical, chemical and biochemical methods are difficult to degrade chlorophenol compounds. Therefore, more and more attention has been paid to the advanced oxidation technology for the degradation of chlorophenol compounds. Low temperature plasma technology is a new advanced oxidation technology, which integrates ozone oxidation, high energy electron radiation and UV photolysis, and has both physical and chemical effects. In the process of dielectric barrier discharge (DBD), active particles such as hydroxyl radical (OH) are produced, which is the key technology of low temperature plasma oxidation. The technology has the advantages of fast reaction speed and complete degradation of organic matter, and has a wide application prospect. Firstly, 2,4,6-trichlorophenol was degraded by dielectric barrier discharge (DBD). The degradation of 2,4,6-trichlorophenol was determined by mass spectrometry and qualitative analysis of chloride ion. Dechlorination takes place to produce 2,4-dichlorophenol. Then, taking 2,4-dichlorophenol as the main degradation target, the effects of initial voltage, initial concentration and initial conductivity of pH, on the degradation efficiency were studied. The results show that when the initial concentration of 4-dichlorophenol is 50 mg/L, the initial voltage is 75 V, and the initial pH is 5.32, the removal rate of dichlorophenol can reach 76.13% when the initial concentration of 4-dichlorophenol is 50 min,2,4-. In order to further improve the removal rate of 2,4-dichlorophenol, the presence of catalyst (Fe2, H2O2, TiO2, 10% IxTiO2) increased the removal rate of 2,4-dichlorophenol. This is because the presence of the catalyst increases the amount of OH in the solution. In the presence of TiO2, the removal rate of 2,4-dichlorophenol can be increased to 83.68%, and with the introduction of 10%I-TiO2, the removal rate of 2,4-dichlorophenol can be increased to 90.59%. In order to verify the effect of OH, the free radical scavenger (tert-butanol, dipropanol) was added to the solution, and the removal rate of 2,4-dichlorophenol decreased with the increase of both concentrations. A part of 2,4-dichlorophenol is still degraded when the concentration of OH is very high, which indicates that DCP is the main oxidant, and other oxidation substances are still produced during the discharge process. 4-dichlorophenol is still degraded in the concentration of 2,4-dichlorophenol. The solution pH and TOC decrease with the increase of discharge time. Finally, 2,4,6-trichlorophenol and 2,4-dichlorophenol and their degradation products were characterized by UV-vis spectrophotometer and mass spectrometry scanning (MS). The structure of the degradation products and the degradation process of 2,4-dichlorophenol were analyzed. The experimental results show that the low temperature plasma can effectively degrade 2,4,6-trichlorophenol and 2,4-dichlorophenol and convert them into other intermediate products. This study provides some theoretical guidance for the practical application of low temperature plasma technology in chlorophenol wastewater treatment.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:X703
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 何帆;杜芳權(quán);郭韻;;2,6-二氯苯酚的合成與應(yīng)用概述[J];科技資訊;2013年07期
2 孫昌俊;陳再成;王飆;劉風(fēng)堯;;選擇性氯化法合成2,4-二氯苯酚[J];河南化工;1990年11期
3 孫昌俊;陳再成;王飆;劉風(fēng)堯;;選擇性氯化法合成2,4——二氯苯酚[J];河南化工;1990年12期
4 趙美法,王峰,徐華,徐炳才;加強(qiáng)2,4-二氯苯酚開發(fā)力度——獲取最佳經(jīng)濟(jì)效益[J];精細(xì)與專用化學(xué)品;1998年23期
5 蔡春,呂春緒,苗麗;2,5-二氯苯酚的合成新方法[J];化學(xué)試劑;2000年05期
6 馮堅(jiān);;2,4-二氯苯酚[J];江蘇農(nóng)藥;2000年04期
7 李從寶;;2,4-二氯苯酚在農(nóng)藥生產(chǎn)中的應(yīng)用[J];化工文摘;2002年04期
8 周文軍,楊瑞強(qiáng),姜梅,展惠英,陳慧,劉國光;表面活性劑對2,4-二氯苯酚在黃土中吸附行為的影響[J];中國環(huán)境科學(xué);2002年04期
9 江鎮(zhèn)海;2,4-二氯苯酚在農(nóng)藥中的市場看好[J];化工生產(chǎn)與技術(shù);2002年05期
10 姜梅,展惠英,袁建梅,陳慧;2,4-二氯苯酚在黃土中的吸附—解吸行為研究[J];安全與環(huán)境學(xué)報(bào);2003年04期
相關(guān)會議論文 前10條
1 裔洪根;徐世清;叢海峰;戴璇穎;王玉軍;曹偉;楊仙蘭;;2,4—二氯苯酚對昆蟲培養(yǎng)細(xì)胞的影響[A];中國蠶學(xué)會第四屆青年學(xué)術(shù)研討會會議論文集[C];2004年
2 王翠蓮;陳亞中;李潤妍;崔鵬;;聲光催化降解2,4-二氯苯酚研究[A];第六屆全國環(huán)境催化與環(huán)境材料學(xué)術(shù)會議論文集[C];2009年
3 劉華;楊洋;張曉昱;;白腐菌對二氯苯酚的降解研究[A];2012年鄂粵微生物學(xué)學(xué)術(shù)年會——湖北省暨武漢微生物學(xué)會成立六十年慶祝大會論文集[C];2012年
4 王翠蓮;陳亞中;李潤妍;崔鵬;;聲光催化降解2,4-二氯苯酚研究(Ⅰ)反應(yīng)條件的影響[A];中國化工學(xué)會2009年年會暨第三屆全國石油和化工行業(yè)節(jié)能節(jié)水減排技術(shù)論壇會議論文集(上)[C];2009年
5 王強(qiáng);馬沛生;湯紅梅;倪麗琴;;擴(kuò)展Kalman濾波同時(shí)測定苯酚和2,4二氯苯酚[A];第十四屆全國分子光譜學(xué)術(shù)會議論文集[C];2006年
6 潘雪峰;陳櫻玉;;2,4-二氯苯酚的氣相色譜分析[A];第三屆廣西青年學(xué)術(shù)年會論文集(自然科學(xué)篇)[C];2004年
7 石冬瑾;周尊隆;盛光遙;;小麥苗對水中2,4-二氯苯酚的根部吸收[A];第五屆全國環(huán)境化學(xué)大會摘要集[C];2009年
8 叢海峰;裔洪根;徐世清;戴璇穎;陳息林;王玉軍;楊仙蘭;;環(huán)境激素2,4—二氯苯酚對家蠶生殖發(fā)育的影響[A];中國蠶學(xué)會第四屆青年學(xué)術(shù)研討會會議論文集[C];2004年
9 李艷;王瓊娥;莊惠生;;Luminol-KMnO_4化學(xué)發(fā)光體系測定痕量的2,4-二氯苯酚[A];第三屆全國環(huán)境化學(xué)學(xué)術(shù)大會論文集[C];2005年
10 周璇;莊惠生;;一種新型改性TiO_2催化膜的制備及其對2,4-二氯苯酚的光催化降解研究[A];第二屆全國環(huán)境化學(xué)學(xué)術(shù)報(bào)告會論文集[C];2004年
相關(guān)重要報(bào)紙文章 前2條
1 趙美法;提高技術(shù) 開拓下游[N];中國化工報(bào);2001年
2 彭城;上馬三氯新要慎重[N];中國化工報(bào);2001年
相關(guān)碩士學(xué)位論文 前10條
1 張羽;內(nèi)分泌干擾物雙酚A(BPA)和2,4-二氯苯酚對人工濕地運(yùn)行效果的影響[D];遼寧大學(xué);2015年
2 馬曉龍;低溫等離子體等技術(shù)降解水中氯苯酚的研究[D];山東大學(xué);2015年
3 黎衛(wèi)亮;2,4-二氯苯酚在黃土性土壤中的吸附及遷移轉(zhuǎn)化研究[D];長安大學(xué);2009年
4 梁慶;微生物電解轉(zhuǎn)化水中2,4-二氯苯酚的研究[D];哈爾濱工業(yè)大學(xué);2011年
5 邊疆;分子印跡技術(shù)去除水中Fe(Ⅲ)和含氯有機(jī)污染物的研究[D];哈爾濱工業(yè)大學(xué);2007年
6 裔洪根;2,4-二氯苯酚和壬基基酚對家蠶的環(huán)境激素作用研究[D];蘇州大學(xué);2004年
7 王子龍;微波強(qiáng)化零價(jià)鋁去除水中2,4-二氯苯酚的研究[D];湖南大學(xué);2012年
8 蔣亦文;二氯苯酚羧化的Kolbe-Schmitt反應(yīng)機(jī)理研究[D];華東理工大學(xué);2011年
9 牛濤;單線態(tài)氧與氯代酚作用機(jī)理的理論研究[D];江南大學(xué);2008年
10 李碧;2,4-二氯苯酚對環(huán)境微生物—礦物交互作用的影響[D];合肥工業(yè)大學(xué);2014年
,本文編號:2443646
本文鏈接:http://sikaile.net/kejilunwen/huanjinggongchenglunwen/2443646.html