共代謝生物催化三氯乙烯降解工藝與機理研究
[Abstract]:Volatile chlorohydrocarbon trichloroethylene (Trichloroethene, TCE), which has the effect of "teratogenesis, carcinogenesis and mutagenesis", is an important organic solvent and chemical raw material. But improper disposal in the process of use leads to the leakage and direct emission of TCE, which seriously pollutes the water, soil and atmospheric environment. As an important source of TCE, the domestic waste landfill A large number of chlorinated hydrocarbons are produced in the degradation process of organic matter. A large number of functional microorganisms are produced under the stress of long-term greenhouse gas methane, carbon dioxide and volatile chlorinated hydrocarbons, and the mixed bacteria enriched by the source of pollution have the biological characteristics of high tolerance and cross nutrition, and can be metabolize and direct oxygen through co metabolism. The more effective degradation of chlorohydrocarbon pollutants is considered as an effective way to remove chlorinated hydrocarbons from TCE. Accordingly, this paper aims to clear the structure of the functional microbial population in the landfill and achieve the goal of efficient methane emission reduction and TCE biodegradation. The functional microbial sieves are carried out in the landfill cover soil as a biological medium. Selection, sequence analysis of functional gene cluster and biodegradation of chlorohydrocarbon, the results are as follows: 1) the methane oxidation capacity of typical landfill covered soil was investigated. It was found that the methane oxidation ability of Chongqing area was stronger, and the initial volume concentration of 14% methane was reached to 99.8%. soil sample in the range of pH value 6 to -8.8 by 150 h degradation rate. The strong methane oxidation ability, the pH=7.02 methane degradation ability is the strongest, the addition of NMS culture base can improve the methane oxidation effect of soil microbe.2), a methane oxidizing bacteria JTC3 which can degrade TCE is separated. The strain has strong degradation ability to TCE. When the initial concentration is 15.64 u mol/L, the 5 d degradation rate is 93.79%. and low concentration TCE (12.55-20.76). The methane oxidation was promoted. The 16S rDNA sequence sequencing comparison and phylogenetic tree analysis were identified as the facultative methane oxidizing bacteria Methylocystis sp., and the granular methane monooxygenase (pMMO) gene cluster was amplified by semi nested PCR method, and T-A cloned and sequenced, and the 3227 BP pmoCAB base was obtained by amplification, sequencing and splicing. The cluster sequence, including 771 BP pmoC gene, 759 BP pmoA gene, 1260 BP pmoB gene and 2 non coding intermediate sequences, corresponding gamma, beta, and alpha subunit theoretical molecular weights respectively 29.1 kDa, 28.6 kDa and 45.6 kDa.3) from the landfill of Chongqing Changsheng bridge landfill for 2 years to methane as the carbon source mixed bacteria, named SWA1.SWA1 can be named Methane is a carbon source to achieve continuous and stable isolated culture. Non methane water-soluble carbon sources will cause the strain that can not be used with methane to become the dominant strain. Low concentration (14.06 mu mol/L) TCE can promote the growth of mixed bacteria group. The increase of copper ion concentration of coenzyme factor promotes the growth of mixed bacteria group and the improvement of methane degradation ability by.4). The process conditions for biodegradation of TCE by bacteria SWA1 are optimized. The higher the TCE concentration is, the higher the TCE concentration is, the higher the degradation rate is in the total initial concentration of TCE when the total initial concentration of TCE is 110.23 u mol/L, and the biodegradation depends on the biological enzyme. After the depletion of the co metabolism matrix methane, the microorganism is used. The existing oxygenase still maintains the TCE degradation activity, but with the continuous consumption of energy, the degradation of TCE will weaken. Copper ions can promote the growth of mixed bacteria group and TCE degradation. TCE in the low copper ion concentration zone (0-0.75 / mol/L) and high copper ion concentration zone (1-15 mu mol/L) has the peak of degradation. When C (Cu2+) =0.03 um mol/L, the TCE degradation rate The maximum 95.75%, when the copper ion concentration was 5 mol/L, the TCE degradation rate reached the highest 84.75%.5) by reverse transcriptase real-time quantitative PCR (Real-time quantitative reverse transcription PCR, RT-qPCR), T-A clone sequencing and high throughput sequencing technology to analyze the community structure of mixed bacteria group, and the mechanism of biodegradation of TCE was deduced. The quantitative PCR results show that the granular methane monooxygenase (particulate methane monooxygenase, pMMO) is the Guan Jianmei in the TCE degradation process. When the concentration of copper ion is 0.03 u mol/L, the peak of the transcription and expression of the pmoA gene and the mmoX gene appears, and the addition of copper ions is beneficial to the expression of the LmpH gene. At the same time, the addition of low concentration (32.17 mu mol/L) is added. The effect of addition on the expression of pmoA was not significant.T-A cloning results showed that the addition of TCE changed the microbial community structure, reduced the abundance of methane oxidizing bacteria and increased the species of non methane oxidizing bacteria. At the same time, the metabolites of methane and TCE provided the raw materials for the non methane oxidizing bacteria, which made the original low abundance microbial resuscitation. High throughput sequencing results showed that The dominant microbes in the mixed bacteria group SWA1 are methane oxidizing bacteria of the methyl cyclosporaceae Methylocystaceae, in addition to the microorganisms that can degrade TCE, such as the Lactococcus of the genus Lactococcus and the Bacillus spore, Bacillus. The increase of copper ion concentration stimulates the growth of the II methane oxidizing bacteria, while the inhibition effect on other non methane oxidizing bacteria is high. The microbial diversity of the mixed bacteria in the copper ion concentration range was reduced, the low concentration of copper ion 0-0.75 and the high concentration range 1-15 u mol/L, the TCE degradation mechanism were different, the low concentration range was mainly pMMO, the dissolved methane monooxygenase (Soluble Methane Monooxygenases, sMMO) Co metabolic degradation of TCE and TCE directly. In high concentration copper ionization. The co metabolism of phenol, hydroxylase and other non methanogenic bacteria played a key role in the degradation of TCE.
【學(xué)位授予單位】:重慶理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:X172;X799.3
【相似文獻】
相關(guān)期刊論文 前10條
1 侯雪敏;臧淑艷;李盼盼;王娟;秦曉龍;林樂;;黑曲霉對菲共代謝降解的影響[J];沈陽化工大學(xué)學(xué)報;2012年02期
2 孫文杰,劉勇弟;微生物共代謝作用的研究進展[J];安陽師范學(xué)院學(xué)報;2003年02期
3 孫雪景;王靜;焦巖;王占華;;微生物共代謝作用的研究與應(yīng)用[J];農(nóng)業(yè)與技術(shù);2010年04期
4 溫繼偉;高大文;;偏腫擬栓菌共代謝降解芘條件的優(yōu)化[J];中國環(huán)境科學(xué);2011年09期
5 鞏宗強,李培軍,王新,張海榮,張春桂,許華夏;真菌對土壤中苯并[a]芘的共代謝降解[J];環(huán)境科學(xué)研究;2001年06期
6 羅瑋;;難降解污染物微生物共代謝作用研究進展[J];土壤通報;2012年06期
7 孫倩;;基于微生物共代謝作用去除廢水中難降解物質(zhì)的研究進展[J];科技致富向?qū)?2013年35期
8 郭瑩;崔康平;;不同共代謝基質(zhì)下三氯乙烯的厭氧生物降解研究[J];地下水;2014年01期
9 張錫輝,R.Bajpai;以關(guān)鍵酶為基礎(chǔ)共代謝模型的建立——以甲烷細菌共代謝三氯乙烯為例[J];環(huán)境科學(xué)學(xué)報;2000年05期
10 鞏宗強,李培軍,王新,張海榮,宋玉芳,李彬;芘在土壤中的共代謝降解研究[J];應(yīng)用生態(tài)學(xué)報;2001年03期
相關(guān)會議論文 前8條
1 李聰聰;成小英;周青;張光生;;植物-微生物共代謝系統(tǒng)在湖泊修復(fù)中作用[A];中國河道治理與生態(tài)修復(fù)技術(shù)?痆C];2010年
2 劉世亮;駱永明;吳龍華;曹志洪;;真菌對苯并[a]芘污染土壤共代謝降解研究[A];土壤資源持續(xù)利用和生態(tài)環(huán)境安全——中國土壤學(xué)會第十一屆二次理事擴大會議暨學(xué)術(shù)會議論文集[C];2009年
3 駱瑋詩;張剛;賈曉珊;;一種新的共代謝分解現(xiàn)象:厭氧同時除磷脫氨氮[A];2011中國環(huán)境科學(xué)學(xué)會學(xué)術(shù)年會論文集(第二卷)[C];2011年
4 黃麗萍;郭瑞;甘琳琳;王寧;;微生物燃料電池生物陽極的五氯酚共代謝降解[A];第六屆全國環(huán)境化學(xué)大會暨環(huán)境科學(xué)儀器與分析儀器展覽會摘要集[C];2011年
5 黃流雅;胡娟;張巍;應(yīng)維琪;;三氯乙烯在苯酚馴化微生物中的共代謝降解性能研究[A];上海市化學(xué)化工學(xué)會2011年度學(xué)術(shù)年會論文集[C];2011年
6 陳梅雪;劉會娟;王菊思;王怡中;;蠟狀芽孢桿菌對偶氮染料酸性紅B的共代謝脫色研究[A];中國化學(xué)會第八屆水處理化學(xué)大會暨學(xué)術(shù)研討會論文集[C];2006年
7 段云霞;韓振為;隋紅;李鑫剛;;三氯乙烯(TCE)和甲苯初始質(zhì)量濃度的不同對共代謝的影響[A];中國化工學(xué)會2003年石油化工學(xué)術(shù)年會論文集[C];2003年
8 彭星星;張再利;賈曉珊;;厭氧共代謝分解四溴雙酚A的關(guān)鍵非生長碳源[A];持久性有機污染物論壇2011暨第六屆持久性有機污染物全國學(xué)術(shù)研討會論文集[C];2011年
相關(guān)博士學(xué)位論文 前9條
1 王雪蓮;三氯乙烯的好氧共代謝與揮發(fā)模型研究[D];中國地質(zhì)大學(xué)(北京);2006年
2 李巖;好氧共代謝降解地下水和土壤中三氯乙烯的研究[D];南開大學(xué);2014年
3 史敬華;不同基質(zhì)共代謝降解地下水中四氯乙烯的研究[D];中國地質(zhì)大學(xué)(北京);2006年
4 孫永利;固定化—共代謝技術(shù)處理五氯苯酚研究[D];天津大學(xué);2007年
5 隋紅;生物通風(fēng)和共代謝生物通風(fēng)去除有機污染物及數(shù)學(xué)模擬研究[D];天津大學(xué);2004年
6 王建輝;基于共代謝作用微曝氣SBR處理難降解有機廢水研究[D];哈爾濱工業(yè)大學(xué);2014年
7 時勝男;Arthrobacter sp.W1共代謝雜環(huán)芳烴及其強化處理焦化廢水的研究[D];哈爾濱工業(yè)大學(xué);2014年
8 徐冰潔;不同碳源條件下功能菌共代謝降解典型PPCPs的效能與機理[D];東華大學(xué);2014年
9 黃流雅;四種三氯乙烯去除工藝的基礎(chǔ)研究與比較[D];華東理工大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 王肖;復(fù)合MBR強化去除污水中殘留抗生素的效果研究[D];東南大學(xué);2015年
2 徐政雪;光催化與生物降解直接耦合體系的優(yōu)化及共代謝調(diào)控[D];吉林大學(xué);2016年
3 李亞龍;芳烴類石油污染物降解優(yōu)勢菌株的篩選與研究[D];中國地質(zhì)大學(xué)(北京);2016年
4 臧苗苗;嗜吡啶紅球菌GF3共代謝降解蒽醌化合物特性研究[D];大連理工大學(xué);2016年
5 高艷輝;共代謝生物催化三氯乙烯降解工藝與機理研究[D];重慶理工大學(xué);2016年
6 張為;不同基質(zhì)共代謝降解廢水中靛藍的研究[D];廣東工業(yè)大學(xué);2013年
7 邢東;油田含油/含聚污水共代謝生物處理技術(shù)及其效能研究[D];東北林業(yè)大學(xué);2013年
8 張文健;不同共代謝基質(zhì)調(diào)節(jié)Stenotrophomonas maltophilia R551-3的吡蟲啉代謝途徑的研究[D];南京師范大學(xué);2011年
9 周沛婕;光合細菌共代謝降解對氯苯酚廢水的研究[D];浙江工業(yè)大學(xué);2014年
10 袁芳;2,,4-二硝基甲苯的微生物共代謝降解研究[D];南京理工大學(xué);2012年
本文編號:2136975
本文鏈接:http://sikaile.net/kejilunwen/huanjinggongchenglunwen/2136975.html