木薯渣基生物質(zhì)炭的制備及其對(duì)土壤中莠去津吸附解吸性能的研究
本文選題:木薯渣生物質(zhì)炭 + 結(jié)構(gòu)特征; 參考:《海南大學(xué)》2015年碩士論文
【摘要】:本研究以熱區(qū)特有的農(nóng)業(yè)廢棄物木薯渣生物質(zhì)為前驅(qū)材料,采用限氧持續(xù)升溫法,于350℃、550℃和750℃下熱解制得3種不同性質(zhì)的生物質(zhì)炭(簡稱BC,分別標(biāo)記為:MS350、MS550和MS750),借助熱重分析儀、元素分析儀、傅立葉紅外光譜儀、掃描電鏡等儀器對(duì)其性質(zhì)進(jìn)行了表征。以莠去津農(nóng)藥為目標(biāo)污染物,考察了木薯渣基生物質(zhì)炭的輸入對(duì)磚紅壤、紅壤、燥紅土中莠去津的吸附解吸行為及再釋放的影響。旨在揭示木薯渣基生物質(zhì)炭對(duì)土壤中莠去津的吸附隔離規(guī)律和機(jī)理,為生物質(zhì)炭的農(nóng)用及土壤中農(nóng)藥的污染控制治理與風(fēng)險(xiǎn)評(píng)估提供依據(jù)。本文取得的主要結(jié)論如下: (1)木薯渣的升溫裂解是一個(gè)芳香性增強(qiáng)、親水性和極性減弱的過程(O/C和(N+O)/C降低);生物質(zhì)炭的灰分含量和pH值隨著熱解溫度的上升而增加;木薯渣經(jīng)炭化處理后,其表面形貌和結(jié)構(gòu)發(fā)生了變化,形成了更多的微孔(0.144cm3/g),從而具有高比表面積(MS750:430.37m2/g)。 (2)磚紅壤、紅壤和燥紅土對(duì)莠去津的吸附能力存在明顯差異,吸附過程分為快速表面點(diǎn)位吸附階段和慢速孔隙填充階段,可用偽二級(jí)動(dòng)力學(xué)方程(R20.993)進(jìn)行描述分析;吸附等溫線表現(xiàn)為非線性,Freundlich、Langmuir模型都可用于模擬該過程,解吸過程存在明顯的滯后效應(yīng);除燥紅土外,莠去津在磚紅壤和紅壤上的吸附是自發(fā)進(jìn)行的,且屬于吸熱反應(yīng)。 (3)生物質(zhì)炭土壤對(duì)莠去津的吸附動(dòng)力學(xué)過程包括快速和緩慢兩個(gè)階段,可用偽二級(jí)動(dòng)力學(xué)方程進(jìn)行更好的描述;其吸附強(qiáng)度大小與所添加生物質(zhì)炭的關(guān)系為MS750 MS550 MS350,且與同種生物質(zhì)炭的添加量在0.1%-5%內(nèi)呈正相關(guān)性。Temkin方程更適用于描述莠去津的吸附/解吸等溫線,其解吸過程存在明顯的遲滯現(xiàn)象,多表現(xiàn)為負(fù)滯后作用,生物質(zhì)炭表面的微孔結(jié)構(gòu)是產(chǎn)生該現(xiàn)象的主要原因之一;莠去津的吸附過程屬于吸熱反應(yīng),是物理吸附(|△G0|20kJ/mol),氫鍵是主要的吸附作用力。生物質(zhì)炭的添加可以增強(qiáng)土壤對(duì)莠去津的吸附能力。 (4)研究了溶液pH值、固液比、炭投加量和重金屬共存對(duì)莠去津在添加1%BC的磚紅壤上的吸附解吸過程的影響,結(jié)果表明:生物質(zhì)炭土壤對(duì)莠去津的吸附強(qiáng)度隨著pH值的增大而減少,溶液pH值為7時(shí)解吸量最大;固液比變化對(duì)莠去津的吸附解吸性能影響表現(xiàn)為1:201:101:5;炭添加水平越高,對(duì)莠去津的親和力越強(qiáng),解吸越弱:重金屬的共存對(duì)莠去津的吸附影響較弱,但對(duì)解吸過程的影響較明顯,可能是重金屬存在會(huì)搶奪生物質(zhì)炭土壤提供的吸附位點(diǎn)。生物質(zhì)炭的輸入增強(qiáng)了土壤對(duì)莠去津農(nóng)藥的隔離能力,其中以MS750最為明顯。4種因素的變化對(duì)5%BC處理釋放莠去津基本無影響。 (5)生物質(zhì)炭土壤對(duì)莠去津的慢吸附行為表現(xiàn)為:隨著吸附過程的進(jìn)行,農(nóng)藥吸附量逐漸增加,但增加幅度逐漸減少最后達(dá)到飽和。考察了pH值、固液比、離子強(qiáng)度和擾動(dòng)因素對(duì)莠去津再釋放的影響,發(fā)現(xiàn):隨著溶液pH值的增加,莠去津的釋放量逐漸增加;低固液比利于莠去津的吸附固定;離子強(qiáng)度變化和擾動(dòng)強(qiáng)度與莠去津的釋放并無明顯規(guī)律。
[Abstract]:In this study, the biomass of cassava residue, a specific agricultural waste, was used as precursor material, and 3 kinds of biomass charcoal (BC, MS350, MS550 and MS750) were prepared by pyrolysis at 350, 550 and 750 C by constant oxygen limiting method. The effects of atrazine based biomass carbon on the adsorption and desorption behavior of atrazine in the red soil, red soil and dryness red soil were investigated to reveal the adsorption and desorption of atrazine and the mechanism of the adsorption and isolation of atrazine in the soil. The main conclusions of this paper are as follows:
(1) the heating and cracking of cassava dregs is a process of enhanced aroma, the decrease of hydrophilicity and polarity (O/C and (N+O) /C). The ash content and pH value of biomass carbon are increased with the increase of pyrolysis temperature. After carbonization, the surface morphology and structure of cassava residue have been changed to form more micropores (0.144cm3/g). There is a high specific surface area (MS750:430.37m2/g).
(2) there are obvious differences in the adsorption capacity of atrazine in red soil, red soil and dryness red soil. The adsorption process is divided into fast surface point adsorption stage and slow pore filling stage, which can be described and analyzed by pseudo two order kinetic equation (R20.993). The adsorption isotherm is non linear, Freundlich and Langmuir model can be used to simulate the process. In addition, the adsorption of atrazine on laterite and red soil is spontaneous and is endothermic reaction.
(3) the adsorption kinetics of atrazine in biomass carbon soil includes fast and slow two stages, which can be described better by pseudo two kinetics equation. The relationship between the adsorption strength and the added biomass carbon is MS750 MS550 MS350, and the.Temkin equation is positively correlated with the addition of the same biomass carbon in 0.1%-5%. It is more suitable for the adsorption / desorption isotherm describing atrazine. The desorption process has obvious hysteresis, and most of them are negative hysteresis. The microporous structure of the surface of biomass carbon is one of the main reasons for this phenomenon. The adsorption process of atrazine belongs to the endothermic reaction. It is the physical adsorption (G0|20kJ/mol) and the hydrogen bond is the main adsorption. The addition of biochar can enhance soil's ability to adsorb atrazine.
(4) the effect of pH value, solid to liquid ratio, carbon dosage and coexistence of heavy metals on the adsorption and desorption of atrazine on the red soil added to 1%BC was studied. The results showed that the adsorption strength of atrazine decreased with the increase of pH value in biomass carbon soil. The adsorption capacity of Atrazine was the maximum when the solution pH value was 7; the adsorption of atrazine to the solid liquid ratio changed to atrazine The effect of desorption performance is 1:201:101:5, the higher the carbon addition level, the stronger the affinity for atrazine, the weaker the desorption: the adsorption of atrazine is weaker, but the effect on the desorption is more obvious. It may be the adsorption site for the heavy metals to snatch the biomass carbon soil. The isolation ability of soil to atrazine was enhanced. MS750 was the most obvious. The change of.4 factors had no effect on the release of atrazine by 5%BC treatment.
(5) the slow adsorption behavior of atrazine in biomass carbon soil is as follows: with the process of adsorption, the adsorption amount of pesticide increases gradually, but the increase is gradually reduced and finally reached saturation. The effects of pH value, solid to liquid ratio, ionic strength and disturbance factors on atrazine re release are investigated. It is found that atrazine is released with the increase of pH value of the solution. The low solid liquid ratio is favorable for the adsorption and fixation of atrazine. There is no obvious rule for the change of ionic strength and disturbance intensity with the release of atrazine.
【學(xué)位授予單位】:海南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:X53
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王燦宇;瞿明仁;;木薯渣去毒、粗纖維降解及應(yīng)用研究進(jìn)展[J];飼料研究;2014年05期
2 祁振;于淑艷;劉璐;王曙光;;石墨烯對(duì)四環(huán)素的吸附熱力學(xué)及動(dòng)力學(xué)研究[J];山東大學(xué)學(xué)報(bào)(工學(xué)版);2013年03期
3 GENG Yue;MA Jing;JIA Ran;XUE Li-qin;TAO Chuan-jiang;LI Chong-jiu;MA Xiao-dong;LIN Yan;;Impact of Long-Term Atrazine Use on Groundwater Safety in Jilin Province, China[J];Journal of Integrative Agriculture;2013年02期
4 陳心想;耿增超;;生物質(zhì)炭在農(nóng)業(yè)上的應(yīng)用[J];西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年02期
5 陳再明;陳寶梁;周丹丹;;水稻秸稈生物碳的結(jié)構(gòu)特征及其對(duì)有機(jī)污染物的吸附性能[J];環(huán)境科學(xué)學(xué)報(bào);2013年01期
6 蔣田雨;姜軍;徐仁扣;周立祥;;稻草生物質(zhì)炭對(duì)3種可變電荷土壤吸附Cd(Ⅱ)的影響[J];農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào);2012年06期
7 安增莉;侯艷偉;蔡超;薛秀玲;;水稻秸稈生物炭對(duì)Pb(Ⅱ)的吸附特性[J];環(huán)境化學(xué);2011年11期
8 趙紅;易海英;陳亮文;何睿;;免疫分析快速檢測(cè)三氮苯類農(nóng)藥殘留的研究進(jìn)展[J];農(nóng)業(yè)災(zāi)害研究;2011年01期
9 余向陽;王冬蘭;母昌立;劉賢進(jìn);;生物質(zhì)炭對(duì)敵草隆在土壤中的慢吸附及其對(duì)解吸行為的影響[J];江蘇農(nóng)業(yè)學(xué)報(bào);2011年05期
10 袁金華;徐仁扣;;生物質(zhì)炭的性質(zhì)及其對(duì)土壤環(huán)境功能影響的研究進(jìn)展[J];生態(tài)環(huán)境學(xué)報(bào);2011年04期
相關(guān)博士學(xué)位論文 前6條
1 劉玉學(xué);生物質(zhì)炭輸入對(duì)土壤氮素流失及溫室氣體排放特性的影響[D];浙江大學(xué);2011年
2 王岙;共存污染物對(duì)沉積物及其主要組分吸附阿特拉津的影響研究[D];吉林大學(xué);2009年
3 劉桂芳;表面改性活性炭吸附酚類內(nèi)分泌干擾物的性能與機(jī)理研究[D];哈爾濱工業(yè)大學(xué);2008年
4 余向陽;黑碳對(duì)農(nóng)藥在土壤中的吸附/解吸行為及其生物有效性的影響[D];西北農(nóng)林科技大學(xué);2007年
5 閆振;落葉松樹皮熱解特性及熱解油制膠技術(shù)研究[D];北京林業(yè)大學(xué);2006年
6 周建斌;竹炭環(huán)境效應(yīng)及作用機(jī)理的研究[D];南京林業(yè)大學(xué);2005年
相關(guān)碩士學(xué)位論文 前5條
1 王立華;畜禽固廢生物質(zhì)炭中的銅鋅形態(tài)以及活性研究[D];浙江大學(xué);2013年
2 李劍鋒;改性木屑處理水中阿特拉津的吸附特性研究[D];東北林業(yè)大學(xué);2010年
3 莊曉艷;碳納米管及其與DOM復(fù)合體系對(duì)阿特拉津的吸附[D];西安建筑科技大學(xué);2009年
4 劉建秋;黑碳對(duì)乙草胺在土壤/沉積物中吸附/解吸行為的影響[D];大連理工大學(xué);2008年
5 周丹丹;生物碳質(zhì)對(duì)有機(jī)污染物的吸附作用及機(jī)理調(diào)控[D];浙江大學(xué);2008年
,本文編號(hào):2026787
本文鏈接:http://sikaile.net/kejilunwen/huanjinggongchenglunwen/2026787.html