Bi系列可見光催化劑的制備及其催化降解性能研究
本文選題:BixOyIz + 亞甲基藍 ; 參考:《鄭州大學》2015年碩士論文
【摘要】:現(xiàn)代化生產過程中排放的有機染料和除草劑是水體中主要污染物,這些污染物對環(huán)境和生物都會產生嚴重的危害,因此對水體中這些污染物的去除越來越重要,綠色的光催化技術因為其降解效率高和對環(huán)境友好等優(yōu)點成為一種治理環(huán)境污染的研究熱點。本文利用水熱法和油浴法制備具有不同晶體形貌的BixOyIz催化劑,使用水熱法合成了球狀的Bi OI和花瓣狀的Bi4O5I2,使用油浴法合成了層狀納米結構的Bi7O9I3。利用紫外-可見光漫反射(UV-vis)、掃描電鏡(SEM)、X射線衍射(XRD)、比表面積分析(BET)和X射線光電子能譜(XPS)對催化劑進行表征分析。結果如下:1.通過XRD和SEM表征分析知道三種催化劑Bi OI、Bi4O5I2和Bi7O9I3沒有很多雜質峰,純度比較高結構,分別為球狀、花瓣球狀和分層納米結構;2.通過UV-Vis表征分析可知Bi OI、Bi4O5I2和Bi7O9I3在可見光區(qū)均有很好的吸收,最大吸收波長分別為673nm、640nm和630nm,禁帶寬度分別1.84e V、1.93e V和1.97e V;3.通過BET表征分析得到比表面積分別是:18、12和8m2/g。4.利用XPS對Bi4O5I2進行表征分析可知,三種元素摩爾比為3.7:5.2:1.6,再通過數(shù)據(jù)分析得出三種元素的化合價為+3,-2,-1,可以確定這種物質就是Bi4O5I2。在光催化降解開始前首先做了催化劑的暗吸附實驗,并利用Freundlich和Langmuir等溫吸附模型模擬了暗吸附過程,結果是Bi OI對MB的吸附更符合Freundlich模型,而且高溫不利于吸附反應。在模擬可見光燈照射條件下,測定了Bi OI對染料亞甲基藍的降解實驗,Bi4O5I2和Bi7O9I3對除草劑2,4-D的降解實驗,考察了催化劑濃度、污染物的初始濃度、光照時間等條件對降解的影響,同時做了降解動力學分析,并在最佳的條件下進行了降解實驗,結果如下:(1)在MB的濃度為50mg/L,催化劑的濃度為1g/L的條件下,Bi OI對MB的降解率達到98%,降解動力學符合準二級模型;(2)在催化劑濃度為1g/L時,2,4-D初始濃度為50mg/L Bi4O5I2對的降解率達到84%左右,降解動力學符合準二級模型;(3)在相同的操作條件下Bi7O9I3對2,4-D的降解率達到95%左右。在夏季晴天和陰天自然光照射下,分別使用Bi OI、Bi4O5I2和Bi7O9I3作為催化劑進行對2,4-D的降解研究;還考察了Bi7O9I3在春、夏、秋、冬四季光照射下催化降解效果實驗,降解效率分別為85.23%、98.66%、87.25%和82.75%;為了考察不同單色光對降解的影響,我們利用單色光片分離出6種太陽光單色光,分別是:紅、橙、黃、綠、藍和紫光,測定其光強度,并在單色光照射下做了催化劑Bi7O9I3對2,4-D的降解實驗,6種單色光的降解效率相差不大,其中紫光降解率最高,達到90.23%。研究結果表明合成的Bi OI、Bi4O5I2和Bi7O9I3催化劑具有很好的結構形貌和可見光吸收,可以很好的降解水中污染物,具有很好的實際應用前景。
[Abstract]:Organic dyes and herbicides discharged in modern production process are the main pollutants in water, which will cause serious harm to the environment and organisms. Therefore, the removal of these pollutants in water is becoming more and more important. Green photocatalytic technology has become a research hotspot in environmental pollution control because of its high degradation efficiency and environmental friendliness. In this paper, BixOyIz catalysts with different crystal morphologies were prepared by hydrothermal method and oil bath method. The spherical BiOI and petal-like Bi4O5I2 were synthesized by hydrothermal method, and the layered Bi7O9I3 was synthesized by oil bath method. The catalysts were characterized by UV-vis-vis, SEM, BET and XPSs. The catalysts were characterized by X-ray diffraction (XRD), specific surface area analysis (BET) and X-ray photoelectron spectroscopy (XPS). The result is as follows: 1. The results of XRD and SEM analysis showed that there were no impurity peaks in the three catalysts BiOI _ 4O _ 5i _ 2 and Bi7O9I3, and their purity was relatively high, which were spherical, petal-shaped and layered nanostructures respectively. The UV-Vis analysis shows that BiOI Bi4O5I2 and Bi7O9I3 have good absorption in visible region, the maximum absorption wavelengths are 673 nm and 630 nm, respectively, and the bandgap is 1.84 e V ~ (1 93e) V and 1.97 e V ~ (3). By BET characterization, the specific surface areas are: 1: 18 12 and 8 m2 / g. 4, respectively. Bi4O5I2 was characterized by XPS, and the molar ratio of three elements was 3.7: 5.2: 1.6. Through the data analysis, the combined valence of the three elements was found to be 3 ~ 4O _ 5i _ 2i ~ (-1), which can be confirmed as Bi4O _ 5i _ 2i _ 2. Dark adsorption experiments were done before photocatalytic degradation, and the dark adsorption process was simulated by Freundlich and Langmuir isothermal adsorption models. The results showed that BiOI adsorption of MB was more in line with the Freundlich model, and the high temperature was not conducive to the adsorption reaction. The degradation experiments of Bi4O5I2 and Bi7O9I3 on herbicide 24-D were carried out under simulated visible light irradiation. The effects of catalyst concentration, initial concentration of pollutants and illumination time on the degradation were investigated. At the same time, the degradation kinetics was analyzed, and the degradation experiment was carried out under the best conditions. The results were as follows: at the concentration of MB 50 mg / L and the concentration of 1g/L as catalyst, the degradation rate of MB was 98%, and the degradation kinetics was in accordance with the quasi second order model, and the degradation rate was about 84% at the initial concentration of 50mg/L Bi4O5I2 when the concentration of the catalyst was 1g/L, and the degradation rate of BiOI was about 84% when the concentration of the catalyst was 50 mg 路L ~ (-1), and the degradation rate of BiOI was about 84%. The degradation rate of 24-D by Bi7O9I3 was about 95% under the same operating conditions. BiOI Bi4O5I2 and Bi7O9I3 were used as catalysts to study the degradation of 2-D on sunny and overcast days in summer, and the catalytic degradation effect of Bi7O9I3 under light irradiation in spring, summer, autumn and winter was also investigated. The degradation efficiency was 85.230.66% and 82.75%, respectively. In order to investigate the effect of different monochromatic light on the degradation, we separated six kinds of monochromatic solar light with monochromatic light, namely red, orange, yellow, green, blue and purple, and measured their light intensity. The degradation efficiency of 6 monochromatic light was not different from that of Bi7O9I3 catalyst under monochromatic light irradiation, and the degradation rate of purple light was the highest (90.2335). The results show that the synthesized BiOI-Bi4O5I2 and Bi7O9I3 catalysts have good structure morphology and visible light absorption, and can degrade pollutants in water well, and have a good prospect of practical application.
【學位授予單位】:鄭州大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:O643.36;X52
【相似文獻】
相關期刊論文 前10條
1 董海龍;李華昌;;原子吸收光譜法測定銅陽極泥中Bi的不確定度評定[J];分析試驗室;2007年07期
2 李特新,劉玉龍,莫育俊,雷潔,茍增光;用表面增強拉曼散射探測Bi~(3+)離子對表面絡合物的作用[J];科學通報;1992年22期
3 王開泰,方向宇,周志龍,杜新民,陳幼新,沈定坤;用玻璃拉絲法制備 Bi 系超導線材[J];無機材料學報;1993年02期
4 奚正平,周廉,冀春霖;Bi系超導相的高溫行為[J];科學通報;1992年02期
5 張青科;鄒鶴飛;張哲峰;;SnBi/Cu界面Bi偏聚機制與時效脆性抑制[J];中國科學:技術科學;2012年01期
6 鐘金魁,董文魁,許力;BI沸石對氨氮的吸附與解吸[J];蘭州交通大學學報;2004年04期
7 易建春;趙朝輝;汪彤蕓;;地調樣品中痕量Bi的測試方法比較[J];礦產綜合利用;2009年05期
8 何洪文;徐廣臣;郭福;;電遷移促進Cu/Sn-58Bi/Cu焊點陽極界面Bi層形成的機理分析[J];焊接學報;2010年10期
9 宋仲容;何家洪;匡海艷;徐強;;Bi(Ⅲ)-茜素紅-十六烷基三甲基溴化銨體系共振散射光譜法測定環(huán)境水樣中痕量鉍[J];應用化學;2010年12期
10 華佩文,周貽茹,曾榮,張永峰,付雪奎,,王敬,袁冠森;銀包套Bi(2223)帶材新工藝探索[J];稀有金屬;1995年06期
相關會議論文 前10條
1 姜建功;李齊;章佩君;馮端;;Bi系超導體中界面的高分辨電子顯微術研究[A];第六次全國電子顯微學會議論文摘要集[C];1990年
2 王燕;王秀峰;田清泉;;Bi_2O_3-SiO_2系統(tǒng)熔融特性對Bi_(12)SiO_(20)多晶體合成的影響[A];2006年全國功能材料學術年會專輯[C];2006年
3 房國麗;張剛;江涌;陸有軍;;Bi和Bi_2O_3納米結構的電化學合成[A];中國空間科學學會空間材料專業(yè)委員會2011學術交流會論文集[C];2011年
4 楊青慧;張懷武;劉穎力;文岐業(yè);;Bi:YIG納米薄膜的磁光特性[A];《硅酸鹽學報》創(chuàng)刊50周年暨中國硅酸鹽學會2007年學術年會論文摘要集[C];2007年
5 陳廷國;張留碗;陳源;;Bi系超導體氧行為的內耗研究[A];內耗與超聲衰減——第四次全國固體內耗與超聲衰減學術會議論文集[C];1994年
6 卓毅;胡全利;鮮于澤;孫頂戰(zhàn);王金星;黃振威;;制備Bi系超導體的新工藝[A];首屆中國功能材料及其應用學術會議論文集[C];1992年
7 陳源;謝曉明;陳廷國;;摻鉛Bi系超導體的內耗研究[A];內耗與超聲衰減——第三次全國固體內耗與超聲衰減學術會議論文集[C];1991年
8 孫秀泉;高波;張正軍;鄭新亮;申慶彪;韓銀錄;卡里布努爾;;質子誘發(fā)~(209)Bi核反應微觀散射截面的理論計算與核廢料處理和核安全設計[A];西部大開發(fā) 科教先行與可持續(xù)發(fā)展——中國科協(xié)2000年學術年會文集[C];2000年
9 梁景志;陳紅雨;李愛菊;吳穎民;李偉善;陳順;張偉;唐明成;竇傳龍;王全;王輝;羅祥;;摻Bi對Pb-Ca-Sn-Al合金電化學行為的影響[A];第十三次全國電化學會議論文摘要集(下集)[C];2005年
10 孫磊;趙U
本文編號:1960806
本文鏈接:http://sikaile.net/kejilunwen/huanjinggongchenglunwen/1960806.html