贛南鎢礦區(qū)土壤重金屬空間分布及其形態(tài)研究
本文選題:重金屬污染 + 空間分布。 參考:《江西理工大學(xué)》2015年碩士論文
【摘要】:礦產(chǎn)資源的開(kāi)采、加工使得各種伴生重金屬元素釋放于地表環(huán)境,已經(jīng)成為土壤重金屬污染的重要來(lái)源,嚴(yán)重影響礦區(qū)土壤生態(tài)系統(tǒng)。為了研究鎢礦區(qū)土壤重金屬的污染現(xiàn)狀,采集礦區(qū)土壤樣品。用ICP-AES測(cè)定土壤重金屬(Pb、Cr、Mn、Zn、Cu、Cd)總量,以國(guó)家土壤二級(jí)標(biāo)準(zhǔn)評(píng)價(jià)其污染程度,運(yùn)用BCR三步連續(xù)提取法分析重金屬的形態(tài)分布特征及影響因素,采用Kriging插值法分析表層土壤重金屬的空間分布特征和重金屬的來(lái)源,并測(cè)定表層土壤脲酶、過(guò)氧化氫酶、蔗糖酶的活性,進(jìn)一步驗(yàn)證土壤重金屬的污染狀況。研究結(jié)果表明重金屬在土壤中存在累積現(xiàn)象,其中上層最嚴(yán)重,其次是中層。上層土壤Pb、Cr、Cu、Zn、Cd平均含量分別是國(guó)家土壤二級(jí)標(biāo)準(zhǔn)的2.264、1.06、1.326、0.647、17.7倍,中層土壤Pb、Cr、Cu、Zn、Cd平均含量分別是國(guó)家土壤二級(jí)標(biāo)準(zhǔn)的1.228、0.923、0.942、0.416、14.33倍。下層土壤雖然還是存在重金屬污染,但程度較輕。六種重金屬的空間相關(guān)性很強(qiáng),最優(yōu)擬合模型都是高斯模型,Cd的擬合模型精確度最高。土壤重金屬的空間分布表明,土壤重金屬來(lái)源于尾礦庫(kù)堆積的尾礦砂中重金屬的遷移。土壤中的元素Pb、Mn是以可還原態(tài)、殘?jiān)鼞B(tài)為主,元素Cr是以可氧化態(tài)、殘?jiān)鼞B(tài)為主,元素Cu、Zn、Cd以殘?jiān)鼞B(tài)為主。除Cr外,Pb、Mn、Cu、Zn、Cd酸溶態(tài)含量在表層土壤最高,最活潑,生物有效性最大。土壤重金屬的形態(tài)與陽(yáng)離子交換量、p H值、重金屬總量有一定的關(guān)系。土壤酶活性低于對(duì)照樣,土壤脲酶、過(guò)氧化氫酶、蔗糖酶分別是對(duì)照的24.27%-93.29%、14.26%-95.63%和10.56%-97.57%。逐步多元回歸法分析表明,在Pb、Cr、Mn、Zn、Cu、Cd復(fù)合污染條件下,礦區(qū)土壤不同酶活性表現(xiàn)出抑制或者激活作用,但各重金屬元素對(duì)不同的酶活性的影響系數(shù)是不一樣的,蔗糖酶對(duì)復(fù)合重金屬污染最為敏感。土壤酶活性的指標(biāo)能較好地反映鎢礦礦區(qū)土壤重金屬?gòu)?fù)合污染狀況。
[Abstract]:Mining and processing of mineral resources have resulted in the release of various associated heavy metal elements into the surface environment, which has become an important source of soil heavy metal pollution and has seriously affected the soil ecosystem of mining areas. In order to study the pollution status of heavy metals in the soil of tungsten ore area, the soil samples of mining area were collected. ICP-AES was used to determine the total amount of heavy metal in soil, and the pollution degree was evaluated by the national soil secondary standard. The speciation and distribution characteristics and influencing factors of heavy metals were analyzed by BCR three-step continuous extraction method. The spatial distribution and source of heavy metals in surface soil were analyzed by Kriging interpolation method. The activities of urease, catalase and sucrase in surface soil were determined to further verify the pollution status of heavy metals in soil. The results showed that the accumulation of heavy metals in soil was the most serious in the upper layer and the second in the middle layer. The average content of Pb ~ (2 +) Cr ~ (2 +) Cu ~ (2 +) Zn ~ (2 +) ~ (2 +) in the upper soil was 17.7 times that of the national soil secondary standard, respectively, and the average content of Pb ~ (2 +) Cr ~ (2 +) Cu ~ (2 +) Zn ~ (2 +) in the middle soil was 1.228 ~ (0.923) ~ (0.942) ~ (0.416) 14.33 times of the second grade national soil standard, respectively. Although heavy metal pollution still exists in the lower soil, the degree of heavy metal pollution is relatively light. The spatial correlation of six heavy metals is very strong, and the best fitting model is the Gao Si model with the highest accuracy. The spatial distribution of heavy metals in soil indicated that the heavy metals in soil originated from the migration of heavy metals in tailings. In soil, the elements of Pb ~ (2 +) mn are mainly reducible and residual, Cr is oxidable and residual, and Cu ~ (2 +) Zn ~ (+) CD is residuals. In addition to Cr, the acid soluble content of PbHMnMnCuN ZnN CD in the topsoil was the highest, the most active, and the bioavailability was the greatest. The speciation of heavy metals in soil is related to the cation exchange capacity (pH) and the total amount of heavy metals. Soil urease, catalase and sucrase activity were 24.27-93.29% and 10.56% -97.57%, respectively. The results of stepwise multivariate regression analysis showed that the enzyme activities of different soils in the mining area were inhibited or activated under the combined pollution of PbPb-Cr-MnMnZn-Cu-Cu and CD, but the influence coefficient of heavy metal elements on different enzyme activities was not the same. Sucrase is most sensitive to complex heavy metal pollution. The index of soil enzyme activity can well reflect the complex pollution of heavy metals in the soil of tungsten mining area.
【學(xué)位授予單位】:江西理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:X53;X753
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張平;甘國(guó)娟;廖柏寒;曾敏;李科林;;鉛鋅礦區(qū)重金屬?gòu)?fù)合污染對(duì)土壤酶活性的影響[J];安全與環(huán)境學(xué)報(bào);2013年03期
2 許紹娥;郝軍亮;孟昭福;王瑤;李璐;彭鴿;白昭;楊淑英;李彬;李忠強(qiáng);;寶雞某冶煉廠(chǎng)周邊土壤鉛鎘總量及形態(tài)空間分布特征[J];干旱地區(qū)農(nóng)業(yè)研究;2014年04期
3 毛海立;龍成梅;楊艷;鄒洪濤;;貴州牛角塘礦區(qū)土壤重金屬形態(tài)分布特征研究[J];環(huán)境科學(xué)與技術(shù);2014年S2期
4 廖國(guó)禮,吳超;礦山不同片區(qū)土壤中Zn、Pb、Cd、Cu和As的污染特征[J];環(huán)境科學(xué);2005年03期
5 王貴,張麗潔;海灣河口沉積物重金屬分布特征及形態(tài)研究[J];海洋地質(zhì)動(dòng)態(tài);2002年12期
6 胡振琪,凌海明;金屬礦山污染土地修復(fù)技術(shù)及實(shí)例研究[J];金屬礦山;2003年06期
7 吳志強(qiáng);顧尚義;李海英;吳紅;;貴州黔西北鉛鋅礦區(qū)土壤重金屬污染及生物有效性研究[J];安全與環(huán)境工程;2009年03期
8 沈桂琴,廖瑞章;重金屬、非金屬、礦物油對(duì)土壤酶活性的影響[J];農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào);1987年03期
9 胡寧?kù)o,李澤琴,黃朋,陶成;貴溪市污灌水田重金屬元素的化學(xué)形態(tài)分布[J];農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào);2004年04期
10 王波;毛任釗;楊蘋(píng)果;侯美亭;胡春勝;;基于Kriging法和GIS技術(shù)的遷安市農(nóng)田重金屬污染評(píng)價(jià)[J];農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào);2006年S2期
,本文編號(hào):1948420
本文鏈接:http://sikaile.net/kejilunwen/huanjinggongchenglunwen/1948420.html