有機(jī)膨潤土等離子體改性及其對典型VOCs的吸附性能研究
發(fā)布時間:2018-05-26 07:51
本文選題:揮發(fā)性有機(jī)物 + 有機(jī)膨潤土 ; 參考:《浙江工商大學(xué)》2015年碩士論文
【摘要】:近年來,中國的霧霾問題受到了廣泛關(guān)注。研究發(fā)現(xiàn)二次有機(jī)氣溶膠是形成霧霾的重要因素,而揮發(fā)性有機(jī)物(VOCs)的排放則是形成二次有機(jī)氣溶膠的主要原因。因此,VOCs治理勢在必行。吸附法是VOCs治理過程中應(yīng)用最為廣泛的方法。然而,常用的吸附劑如活性炭存在再生難度大、吸附成本高、伴隨二次污染等問題。煅燒后的有機(jī)膨潤土(PCH-calcination)是一種對VOCs具有良好吸附作用的吸附劑,然而其制備過程能耗高、耗時長,易導(dǎo)致有機(jī)膨潤土層間和孔道塌陷影響其吸附性能。因此,本文在有機(jī)膨潤土傳統(tǒng)煅燒制備方法的基礎(chǔ)上,重點(diǎn)研究了有機(jī)膨潤土等離子體改性的新型制備方法。首先研究了PCH-calcination對典型VOCs的吸附性能,優(yōu)化有機(jī)膨潤土制備方法,為等離子體改性奠定研究基礎(chǔ);之后重點(diǎn)研究了等離子體放電參數(shù)和放電條件對有機(jī)膨潤土改性效果的影響,并從物化特性對改性機(jī)理進(jìn)行了深入的分析。研究結(jié)果表明PCH-calcination的吸附性能跟陽離子表面活性劑的碳鏈長度有關(guān),十六烷基三甲基溴化銨(CTMAB)制備的有機(jī)膨潤土在煅燒后比表面積達(dá)到608.3 m2/g,對環(huán)己酮的吸附量達(dá)到129mg/g; PCH-calcination的吸附性能與陽離子表面活性劑的添加量呈正相關(guān),然而當(dāng)膨潤土與陽離子表面活性劑的配比≥1:2時,環(huán)己酮吸附量提高不明顯;PCH-calcination對環(huán)己酮的吸附性能與制備過程中柱撐劑的添加量有關(guān),當(dāng)柱撐劑與膨潤土的配比在1:120時,其煅燒后對環(huán)己酮的吸附量最大。另外,研究結(jié)果表明吸附溫度越高,PCH-calcination對環(huán)己酮的吸附量越。怀跏嘉剿俾孰S著環(huán)己酮流量的增大而增加;PCH-calcination對環(huán)己酮的吸附量隨著環(huán)己酮濃度增加而增加。綜上所述,本實(shí)驗(yàn)優(yōu)選出有機(jī)膨潤土的制備方法和吸附方法為:CTMAB配比為1:1,柱撐劑配比為1:120,動態(tài)吸附過程中溫度為30℃,環(huán)己酮流量為500 mL/min,環(huán)己酮濃度為20 mg/m3。此方法作為等離子體改性有機(jī)膨潤土及其吸附性能研究的基本條件。在等離子體改性有機(jī)膨潤土過程中,放電時間、放電間隙、初始放電電壓和正負(fù)電暈等放電參數(shù)都會影響有機(jī)膨潤土的吸附性能。研究結(jié)果表明等離子體改性后的有機(jī)膨潤土(PCH-plasma)吸附性能隨著放電時間的增加先增加而后減小,放電時間從1h增加至8 h,環(huán)己酮吸附量從40 mg/g上升至132 mg/g,而10h時其吸附量下降至123 mg/g。究其原因是由于PCH-plasma的比表面積和介孔孔容隨著放電時間先增加而后減少,比表面積從153.5 m2/g增加至468.8 m2/g后又減少至405.0 m2/g,孔容從0.28 cm3/g增大至0.75 cm3/g后又減少至0.62cm3/g。XPS的結(jié)果顯示PCH-plasma中碳、氧以及C=OR等官能團(tuán)對其吸附性能起到關(guān)鍵作用;放電間隙從5 mm增加至15mm, PCH-plasma對環(huán)己酮的吸附性能變好;初始放電電壓與PCH-plasma的吸附性能呈正相關(guān);而負(fù)電暈的改性效果稍好于正電暈。此外,本文還研究了氧氣濃度和流量、有機(jī)膨潤土的處理量等參數(shù)對PCH-plasma吸附性能的影響,結(jié)果顯示較高的氧氣濃度有利于有機(jī)膨潤土的改性,當(dāng)氧氣濃度為20%時PCH-plasma對環(huán)己酮吸附量為12 mg/g,比表面積和孔容分別為142.8m2/g和0.35 cm3/g,而當(dāng)氧氣濃度上升至100%時,吸附量提高到69 mg/g,比表面積和孔容分別增加至342.8 m2/g和0.50 cm3/g; PCH-plasma吸附性能隨著氧氣流量的增加而改善;有機(jī)膨潤土的處理量越小,有機(jī)膨潤土的改性效果越好,但太小也可能導(dǎo)致有機(jī)膨潤土無法在改性過程發(fā)生燃燒而使得改性效果變差。從上述結(jié)果可知,在本實(shí)驗(yàn)中,放電時間為8h時PCH-plasma對環(huán)己酮的吸附量為.132 mg/g,達(dá)到甚至超過了煅燒后有機(jī)膨潤土對環(huán)己酮的吸附量。
[Abstract]:In recent years, the haze problem in China has been widely concerned. Two organic aerosols are found to be an important factor in the formation of fog and haze, and the emission of volatile organic compounds (VOCs) is the main reason for the formation of two organic aerosols. Therefore, the treatment of VOCs is imperative. Adsorption is the most widely used method in the process of VOCs treatment. The commonly used adsorbents, such as activated carbon, are difficult to regenerate, with high adsorption cost and two pollution. The calcined organic bentonites (PCH-calcination) are a kind of adsorbents with good adsorption to VOCs. However, the preparation process has high energy consumption and long time consumption, and the easy conductivity of organic bentonite interlayer and pore collapse affects its adsorption. Therefore, on the basis of the traditional calcining methods of organic bentonite, this paper focuses on the new preparation methods of plasma modification of organic bentonite. Firstly, the adsorption properties of PCH-calcination on typical VOCs are studied, and the preparation methods of organic bentonite are optimized, and the research foundation for plasma modification is laid. The effects of plasma discharge parameters and discharge conditions on the modification of organic bentonite were investigated, and the modification mechanism was deeply analyzed from physicochemical properties. The results showed that the adsorption properties of PCH-calcination were related to the carbon chain length of the cationic surfactant, and the organic bentonite prepared by sixteen alkyl three methyl ammonium bromide (CTMAB) was found. After calcined, the specific surface area reached 608.3 m2/g and the adsorption capacity of cyclohexanone reached 129mg/g; the adsorption performance of PCH-calcination was positively related to the addition of cationic surfactant. However, when the ratio of bentonite to cationic surfactant was more than 1:2, the adsorption capacity of cyclohexanone was not obviously improved; the adsorption of cyclohexanone by PCH-calcination The performance is related to the addition of pillared agent in the preparation process. When the ratio of pillared and bentonite is 1:120, the adsorption capacity of cyclohexanone after calcining is the largest. In addition, the results show that the higher the adsorption temperature, the smaller the adsorption capacity of PCH-calcination to cyclohexanone; the initial adsorption rate increases with the increase of cyclohexanone flow rate; PCH-c The adsorption of cyclohexanone with alcination increases with the concentration of cyclohexanone. In summary, the preparation and adsorption methods of organic bentonite are: CTMAB ratio is 1:1, the ratio of pillared agent is 1:120, the temperature of the dynamic adsorption process is 30, the flow of cyclohexanone is 500 mL/min, the concentration of cyclohexanone is 20 mg/m3.. As the basic conditions for the study of the plasma modified organic bentonite and its adsorption properties, the discharge time, discharge gap, initial discharge voltage and positive and negative corona will affect the adsorption properties of organic bentonite during the process of plasma modified organic bentonite. The results show that the organic bentonite after the plasma is modified. The adsorption performance of soil (PCH-plasma) increases first and then decreases with the discharge time, and the discharge time increases from 1H to 8 h, and the adsorption amount of cyclohexanone increases from 40 mg/g to 132 mg/g, while the adsorption amount of 10h decreases to 123 mg/g., due to the specific surface area of PCH-plasma and the first increase and then then decrease of the mesoporous Kong Kongrong with the discharge time. The area increased from 153.5 m2/g to 468.8 m2/g and decreased to 405 m2/g. Kong Rong increased from 0.28 cm3/g to 0.75 cm3/g and decreased to 0.62cm3/g.XPS. The results showed that the functional groups such as carbon, oxygen and C=OR played a key role in the adsorption properties of PCH-plasma; the discharge gap increased from 5 mm to 15mm and PCH-plasma on cyclohexanone. The initial discharge voltage has a positive correlation with the adsorption performance of PCH-plasma, while the modified effect of negative corona is slightly better than the Yu Zheng corona. In addition, the effects of oxygen concentration and flow rate and the amount of organic bentonite on the adsorption properties of PCH-plasma are also studied. The results show that the higher oxygen concentration is beneficial to the modification of organic bentonite. When the oxygen concentration is 20%, the adsorption capacity of cyclohexanone is 12 mg/g, and the specific surface area and pore volume are 142.8m2/g and 0.35 cm3/g, respectively. When the oxygen concentration increases to 100%, the adsorption capacity increases to 69 mg/g, and the surface area and pore volume increase to 342.8 m2/g and 0.50 cm3/g, respectively. The adsorption performance of PCH-plasma increases with the increase of oxygen flow. Improvement; the smaller the amount of organic bentonite treatment, the better the modification effect of organic bentonite, but too small also may cause the organic bentonite to be unable to burn in the modification process and make the modification effect worse. From the above results, the adsorption amount of PCH-plasma to cyclohexanone at 8h discharge time is.132 mg/g, even in this experiment. The adsorption capacity of organic bentonite to cyclohexanone after calcination exceeded.
【學(xué)位授予單位】:浙江工商大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TQ424.3;X51
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;海名斯新建有機(jī)膨潤土廠[J];中國涂料;2002年05期
2 余麗秀,孫亞光;分散性有機(jī)膨潤土評價方法研究[J];非金屬礦;2004年03期
3 宋美寧,呂憲俊;有機(jī)膨潤土的制備工藝及應(yīng)用現(xiàn)狀研究[J];中國非金屬礦工業(yè)導(dǎo)刊;2005年04期
4 李凱,龔文琪;有機(jī)膨潤土的制備及應(yīng)用綜述[J];科技創(chuàng)業(yè)月刊;2005年02期
5 羅太安;;有機(jī)膨潤土對活性艷紅X-3B的吸附[J];化工礦物與加工;2006年10期
6 王騫;王玉嬌;梁成剛;;顆粒有機(jī)膨潤土的制備及脫色研究[J];陰山學(xué)刊(自然科學(xué));2011年02期
7 陳蕓;;有機(jī)膨潤土的應(yīng)用[J];建材工業(yè)信息;1985年02期
8 陳來申;;有機(jī)膨潤土凝膠在防銹底漆中的應(yīng)用[J];江蘇化工;1987年03期
9 徐文e,
本文編號:1936406
本文鏈接:http://sikaile.net/kejilunwen/huanjinggongchenglunwen/1936406.html
最近更新
教材專著