正滲透膜分離技術(shù)處理校園生活污水的試驗研究
本文選題:正滲透膜分離技術(shù) + 海水; 參考:《青島理工大學(xué)》2015年碩士論文
【摘要】:目前我國污水處理現(xiàn)狀存在工藝脫氮除磷效果不夠理想、工藝運行能耗大、污水處理成本高等問題。膜分離技術(shù)因其污水處理的高效性得到了廣泛的研究和實際的應(yīng)用,其中無需外加壓力驅(qū)動的正滲透(FO)膜分離技術(shù)作為一種新發(fā)展起來的膜分離技術(shù),因其能耗低、截留率高、膜污染可逆等優(yōu)點在廢水處理、食品醫(yī)藥加工、海水淡化、能源開發(fā)等方面不斷得到重視,顯現(xiàn)了潛在的研究及利用價值。為探究正滲透膜分離技術(shù)對實際校園生活污水的處理效果及膜污染問題,為正滲透膜分離技術(shù)處理校園生活污水的實際運行、調(diào)控及海水作為驅(qū)動液的可行性等方面提供實驗依據(jù),本論文以正滲透膜分離設(shè)備為試驗裝置,美國HTI公司的TFC-ES膜為正滲透膜材料,青島團島海域的天然海水作為驅(qū)動液進行了試驗研究。首先,論文對TFC-ES正滲透膜性能進行了研究評價,原料液為蒸餾水,驅(qū)動液為海水。在通過SEM圖像對該正滲透膜的形態(tài)結(jié)構(gòu)進行表征的基礎(chǔ)上,試驗研究了正滲透過程中膜朝向、錯流速度兩個影響因素對膜的水通量和驅(qū)動溶質(zhì)逆向滲透現(xiàn)象的影響。結(jié)果表明:采用FO模式(即活性層朝向原料液,支撐層朝向驅(qū)動液)時膜的初始水通量比采用PRO模式(即活性層朝向驅(qū)驅(qū)動液,支撐層朝向原料液)時的小,整體水通量變化趨勢也較小,驅(qū)動溶質(zhì)逆向滲透到原料液中的量也較小;當(dāng)將錯流速度由1L/min提高到1.5L/min再提高到2L/min時,在其他運行條件一致的情況下,水通量隨著錯流速度的增大而增大,驅(qū)動溶質(zhì)的逆向滲透現(xiàn)象也更嚴(yán)重。其次,試驗將TFC-ES膜用于正滲透膜分離系統(tǒng),對系統(tǒng)處理實際校園生活污水的效果進行了研究,原料液為校園生活污水,驅(qū)動液為海水。結(jié)果表明:FO模式下膜的水通量比PRO模式下的小,水通量的下降趨勢也較小,水通量較穩(wěn)定,且對污水中的氨氮、亞硝酸鹽氮、硝酸鹽氮的截留效果也比PRO模式下的好;當(dāng)采用FO模式且保持其他運行條件不變,將膜兩側(cè)的錯流速度從1L/min提高到1.5L/min再提高到2L/min時,隨著錯流速度的增加,水通量隨之增加,但污水中的氨氮、亞硝酸鹽氮、硝酸鹽氮透過正滲透膜的量也會增加,對污染物質(zhì)的截留率降低。最后,試驗對正滲透膜分離過程中的膜污染及膜清洗情況進行了探究,對FO模式、PRO模式兩種模式下處理相同時間生活污水的TFC-ES膜采用去離子水浸泡+設(shè)備運行沖洗的物理方法進行清洗,并對兩種模式下的污染的膜和清洗的膜進行水通量測試,可知FO模式下污染的膜的水通量比PRO模式下的下降幅度低,表明系統(tǒng)在FO模式下運行膜污染程度較低;FO模式下污染的膜清洗后的膜清洗效率達(dá)到98.8%,而PRO模式下污染的膜經(jīng)過清洗后清洗效率達(dá)到96.5%,水通量都基本恢復(fù)到污染前的值,這表明采用簡單的物理清洗可以使正滲透膜的性能基本恢復(fù),且系統(tǒng)在FO模式下運行的膜污染較輕,清洗效果更明顯。另外,通過掃描電鏡的結(jié)果可知:正滲透膜分離過程中的膜污染較輕,污染物只是簡單松散的附著在膜表面,通過簡單的物理方法清洗后,基本可以恢復(fù)膜表面的初始形態(tài)。
[Abstract]:At present, the current situation of wastewater treatment in China is not ideal for nitrogen and phosphorus removal, high energy consumption and high cost of sewage treatment. Membrane separation technology has been widely studied and applied because of the efficiency of sewage treatment. No pressure driven positive permeation (FO) membrane separation technology is used as a new development. Because of its low energy consumption, high interception rate and reversible membrane fouling, the membrane separation technology has been paid more attention to wastewater treatment, food processing, desalination, energy development and so on, showing potential research and utilization value. In this paper, the positive osmosis membrane separation technology is used to deal with the actual operation of campus sewage, control and the feasibility of sea water as a driving fluid. This paper takes the positive permeable membrane separation equipment as the test device, the TFC-ES membrane of HTI company in the United States as the positive permeable membrane material, and the natural seawater in the Qingdao island sea area as the driving fluid. First, the performance of the TFC-ES positive permeable membrane was studied and evaluated. The liquid was distilled water and the driving liquid was sea water. On the basis of the characterization of the morphological structure of the positive permeable membrane through the SEM image, the water flux and the inverse of the solute driven by the two factors affecting the membrane orientation and the velocity of the flow in the positive permeation process were studied. The results show that the initial water flux of the membrane is smaller than that of the PRO mode when the FO mode (the active layer toward the raw material and the supporting layer toward the driving fluid) is smaller than that by the use of the active layer toward the drive fluid and the support layer toward the raw material. It is also smaller. When the flow rate is increased from 1L/min to 1.5L/min and then to 2L/min, the water flux increases with the increase of the flow rate, and the reverse osmosis of the solute is more serious when the other operating conditions are consistent. Secondly, the TFC-ES film is used in the positive permeable membrane separation system to deal with the actual campus life in the system. The effect of sewage is studied. The liquid is the campus sewage and the driving liquid is sea water. The result shows that the water flux in the FO model is smaller than that under the PRO model, the downward trend of water flux is smaller, the water flux is more stable, and the effect of the ammonia nitrogen, nitrite nitrogen and nitramine nitrogen in the sewage is better than that in the PRO model. With FO mode and other operating conditions unchanged, the water flux increases with the increase of the flow rate from 1L/min to 1.5L/min and then to 2L/min, but the amount of ammonia nitrogen, nitrite nitrogen, nitrate nitrogen through the positive permeation membrane in the sewage will also increase, and the interception rate of the contaminated material will be reduced. Finally, The membrane fouling and membrane cleaning in the separation process of the positive permeable membrane were investigated. The physical methods of deionized water immersion + equipment running and washing in the two modes of FO mode and PRO mode for treating the same time sewage in the two modes were carried out, and the water flux of the contaminated membrane and the cleaning film under the two modes was carried out. The test shows that the water flux of the polluted membrane under the model of FO is lower than that under the PRO model, indicating that the membrane fouling of the system under the FO mode is low; the membrane cleaning efficiency after the cleaning of the membrane under the FO mode is 98.8%, while the cleaning efficiency of the polluted membrane under the PRO mode is 96.5%, and the water flux is basically recovered to the pollution. It shows that the performance of the positive osmosis membrane can be basically recovered by simple physical cleaning, and the membrane pollution of the system under FO mode is lighter and the cleaning effect is more obvious. In addition, the results of the scanning electron microscope show that the membrane fouling in the separation process of the positive osmosis membrane is lighter, and the pollutants are simply and loosely attached to the membrane surface. After cleaning by a simple physical method, the initial shape of the film surface can be basically restored.
【學(xué)位授予單位】:青島理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:X799.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 程世營;張捍民;楊鳳林;;墊片法對正滲透過程中濃差極化的改善研究[J];膜科學(xué)與技術(shù);2015年01期
2 胡群輝;鄒昊;姜瑩;彭博;劉旦;梁劍;;正滲透膜分離關(guān)鍵技術(shù)及其應(yīng)用進展[J];膜科學(xué)與技術(shù);2014年05期
3 嚴(yán)濱;李元高;廖文超;曾孟祥;徐蘇;;正向滲透分離技術(shù)及其應(yīng)用進展述評[J];廈門理工學(xué)院學(xué)報;2014年01期
4 李潔;王軍;白羽;李國亮;侯得印;欒兆坤;;正滲透汲取劑及其分離回收工藝研究進展[J];水處理技術(shù);2014年01期
5 張乾;時強;阮國嶺;初喜章;;正滲透水處理關(guān)鍵技術(shù)研究進展[J];工業(yè)水處理;2012年05期
6 雷小佳;;現(xiàn)代膜分離技術(shù)的研究進展[J];廣州化工;2012年08期
7 王薇;孫靜;王寶春;;正滲透過程參數(shù)對滲透性能的影響[J];高分子材料科學(xué)與工程;2012年01期
8 王忠福;;我國水資源利用中的問題與可持續(xù)利用對策[J];西安郵電學(xué)院學(xué)報;2011年05期
9 林紅軍;陳建榮;陸曉峰;王方園;洪華嫦;;正滲透膜技術(shù)在水處理中的應(yīng)用進展[J];環(huán)境科學(xué)與技術(shù);2010年S2期
10 羅南;王捷;張宏偉;張燕;何玉倩;;正向滲透工藝及其在水處理中的應(yīng)用[J];工業(yè)水處理;2010年10期
,本文編號:1930840
本文鏈接:http://sikaile.net/kejilunwen/huanjinggongchenglunwen/1930840.html