土壤重金屬Cd污染指數(shù)的適宜插值方法和合理采樣數(shù)量研究
發(fā)布時(shí)間:2018-05-14 11:53
本文選題:插值方法 + 采樣數(shù)量; 參考:《土壤通報(bào)》2016年05期
【摘要】:對(duì)局部存在重金屬污染地區(qū)采用適宜的插值方法和布設(shè)合理的采樣點(diǎn)對(duì)重金屬污染狀況監(jiān)測(cè)具有重要的意義。運(yùn)用單因子指數(shù)法得到土壤重金屬Cd污染指數(shù),并在鎮(zhèn)域內(nèi)布設(shè)2033個(gè)采樣點(diǎn)的基礎(chǔ)上,通過(guò)隨機(jī)抽樣法抽取1830、1423、1017、610、203五個(gè)采樣點(diǎn)樣本子集。首先,運(yùn)用普通克里金法(OK)、徑向基函數(shù)法(RBF)和反距離權(quán)重法(IDW)對(duì)該地區(qū)土壤重金屬Cd污染指數(shù)進(jìn)行插值預(yù)測(cè),并通過(guò)交叉驗(yàn)證法進(jìn)行精度檢驗(yàn)。然后,在反距離權(quán)重法的基礎(chǔ)上,對(duì)五個(gè)采樣子集進(jìn)行插值精度分析,得到大致合理采樣數(shù)量。結(jié)果表明:(1)利用全集2033個(gè)采樣點(diǎn)對(duì)3種插值方法進(jìn)行交叉驗(yàn)證分析可知,RMSE表現(xiàn)為IDW(3.018)RBF(2.942)OK(2.837),ME表現(xiàn)為OK(-0.0736)IDW(0.0214)RBF(0.0096),MAE表現(xiàn)為IDW(0.5668)RBF(0.5575)OK(0.5227),3種插值方法在整體預(yù)測(cè)精度上差異不明顯。而對(duì)于污染區(qū)域的識(shí)別,IDW在輕度污染區(qū)、中度污染區(qū)和重度污染區(qū)預(yù)測(cè)上表現(xiàn)出較大的優(yōu)勢(shì),能較好的反應(yīng)污染區(qū)域的空間變異特征。因此,認(rèn)為IDW為較適宜的空間插值方法。(2)對(duì)不同采樣數(shù)量的樣本進(jìn)行交叉驗(yàn)證分析可知,RMSE、ME和MAE在1017個(gè)采樣點(diǎn)到610個(gè)采樣點(diǎn)誤差變化幅度分別為29.84%、71.31%和36.99%,誤差增加幅度較前三個(gè)子樣本間明顯增大。在空間特征識(shí)別方面,2033、1830、1423和1017個(gè)采樣點(diǎn)反映的污染區(qū)的空間分布特征非常相似,610和203個(gè)采樣點(diǎn)預(yù)測(cè)的污染區(qū)域面積明顯擴(kuò)大,對(duì)各級(jí)污染區(qū)域的空間特征細(xì)節(jié)表現(xiàn)能力較差。因此,對(duì)于該鎮(zhèn)域內(nèi)的土壤重金屬Cd污染指數(shù)的研究,1017個(gè)左右采樣點(diǎn)是比較合理的采樣數(shù)量。
[Abstract]:It is of great significance to monitor the pollution status of heavy metals by using appropriate interpolation method and setting up reasonable sampling points for local heavy metal polluted areas. The CD pollution index of soil heavy metals was obtained by single factor index method. On the basis of setting 2033 sampling sites in the town area, the subsets of 1830 ~ 1423 ~ 1017610203 samples were selected by random sampling method. Firstly, the common Kriging method, radial basis function method (RBF) and inverse distance weight method (IDW) are used to predict the CD pollution index of soil in this area. Then, on the basis of the inverse distance weight method, the interpolation accuracy of five sampling subsets is analyzed, and the approximate reasonable sampling quantity is obtained. The results showed that the RMSE of IDW3.018 RBFU 2.942 OKO 2.837Me showed that IDW0.5668RBFU 0.5575OKO 0.52272727 had no significant difference in the overall prediction accuracy by using 2033 sampling points of the whole set. The results showed that the RMSE showed no significant difference in the overall prediction accuracy of IDW0.5668 RBFU 0.5575OKO 0.52272770.The RMSE showed no significant difference in the overall prediction accuracy of IDW0.5668RFU 0.5575OKU 0.522727. The IDW of the polluted area shows a great advantage in the prediction of the mild, moderate and heavy polluted areas, and can better reflect the spatial variation characteristics of the polluted areas. Therefore, It is concluded that IDW is a more suitable spatial interpolation method. (2) the cross validation analysis of samples with different sampling numbers shows that the error range of RMS Eime and MAE from 1 017 sampling points to 610 sampling points is 29.84% and 36.99% respectively, and the error increase range is higher than that before. The size of the three subsamples was significantly larger. In the aspect of spatial feature identification, the spatial distribution characteristics of polluted areas reflected by 2033N 18301423 and 1017 sampling sites are very similar to those of the pollution areas predicted by the sampling sites of No.610 and 203, and the spatial characteristics of the polluted areas at different levels of pollution are not well represented by the spatial characteristics of the contaminated areas. Therefore, for the study of CD pollution index of soil heavy metals in the town area, 1 017 sampling sites are more reasonable for sampling.
【作者單位】: 中國(guó)地質(zhì)大學(xué)土地科學(xué)技術(shù)學(xué)院;國(guó)土資源部土地整治重點(diǎn)實(shí)驗(yàn)室;北京師范大學(xué)減災(zāi)與應(yīng)急管理研究院;江蘇省地質(zhì)調(diào)查研究院;
【基金】:國(guó)土資源部公益性行業(yè)科研專項(xiàng)課題(201511082-02)資助
【分類號(hào)】:X53;X833
【相似文獻(xiàn)】
相關(guān)期刊論文 前4條
1 胡克林,李保國(guó),呂貽忠,張鳳榮;非平穩(wěn)型區(qū)域土壤汞含量的各種估值方法比較[J];環(huán)境科學(xué);2004年03期
2 趙娟;;ArcGIS插值方法對(duì)比及其在云南省土壤污染狀況調(diào)查中的應(yīng)用[J];環(huán)境科學(xué)導(dǎo)刊;2010年S1期
3 李東升;施昆;畢廷濤;任敏栓;;基于GIS的云南省會(huì)澤縣者海鎮(zhèn)土壤中重金屬插值方法[J];科學(xué)技術(shù)與工程;2011年10期
4 ;[J];;年期
相關(guān)碩士學(xué)位論文 前3條
1 王子良;空間數(shù)據(jù)預(yù)處理及插值方法對(duì)比研究[D];合肥工業(yè)大學(xué);2010年
2 田美影;污染場(chǎng)地空間插值的精度評(píng)價(jià)方法及應(yīng)用[D];首都師范大學(xué);2013年
3 段志鵬;基于GIS的近海水環(huán)境要素空間分布特征插值方法研究[D];華南理工大學(xué);2014年
,本文編號(hào):1887742
本文鏈接:http://sikaile.net/kejilunwen/huanjinggongchenglunwen/1887742.html
最近更新
教材專著