環(huán)境中痕量鈾和鉻檢測(cè)新方法的研究
本文選題:鈾(VI) + 鉻(VI); 參考:《南華大學(xué)》2015年碩士論文
【摘要】:對(duì)于環(huán)境中痕量鈾和鉻的測(cè)定在衛(wèi)生檢驗(yàn)中的研究意義和研究現(xiàn)狀進(jìn)行詳細(xì)的介紹。介紹了樣品處理中濁點(diǎn)萃取以及二次萃取技術(shù)的概念和基本原理。闡述了本文新建立的環(huán)境樣品中痕量鈾和鉻檢測(cè)新方法研究的定量依據(jù)和基本原理。第二章在稀硫酸介質(zhì)中,鈾以鈾酰離子(UO22+)的形式存在,它能催化溴酸鉀氧化熒光試劑羅丹明G(Rh G)的氧化還原反應(yīng),導(dǎo)致體系的熒光強(qiáng)度降低,根據(jù)反應(yīng)體系的熒光強(qiáng)度降低值(ΔF)與鈾酰離子的濃度的線性關(guān)系,建立一種新的測(cè)定環(huán)境樣品中鈾的催化熒光法。經(jīng)實(shí)驗(yàn)發(fā)現(xiàn),催化熒光體系的最佳激發(fā)波長(zhǎng)和發(fā)射波長(zhǎng)分別為525 nm和552 nm。最佳優(yōu)化條件下,反應(yīng)體系的熒光強(qiáng)度降低值ΔF與鈾(VI)濃度在6.62×10-9~5.2×10-8 g/m L范圍內(nèi)線性關(guān)系良好,工作曲線的線性回歸方程為ΔF=22.2+52.6 c(g/m L),相關(guān)系數(shù)r=0.9992。方法檢出限為2.0×10-9 g/m L。新建方法可用于水樣中鈾的測(cè)定,RSD為2.8%-4.6%,樣品加標(biāo)回收率為99.3%~102.5%。第三章本章在第二章的基礎(chǔ)上,研究先采用二次濁點(diǎn)萃取技術(shù)對(duì)樣品中的痕量鈾進(jìn)行富集,再應(yīng)用U-salophen配合物能光催化溴酸鉀氧化羅丹明G的特點(diǎn),將二次濁點(diǎn)萃取技術(shù)與光催化動(dòng)力學(xué)熒光檢測(cè)法相互結(jié)合起來(lái),建立一種測(cè)定復(fù)雜樣品中微量鈾的新方法,新建方法能應(yīng)用于鈾的水質(zhì)檢驗(yàn)。在實(shí)驗(yàn)條件下,在MES-Tris緩沖液中,通過(guò)加入表面活性劑Triton X-114,對(duì)樣品中鈾進(jìn)行二次濁點(diǎn)萃取,可將樣品中的鈾酰陽(yáng)離子萃取而富集,再加入salophen配體,使其與salophen配合形成U-salophen配合物。U-salophen配合物能產(chǎn)生光催化作用,加速溴酸鉀氧化羅丹明G反應(yīng),使其熒光強(qiáng)度減弱,熒光強(qiáng)度減弱值與鈾的含量呈直線關(guān)系,據(jù)此建立一種催化動(dòng)力學(xué)光度法測(cè)定環(huán)境水中鈾(VI)的新方法。該光催化熒光體系的最佳激發(fā)波長(zhǎng)和發(fā)射波長(zhǎng)分別為525 nm和553 nm。實(shí)驗(yàn)結(jié)果表明,在最佳優(yōu)化實(shí)驗(yàn)條件下,反應(yīng)體系的熒光值改變值(ΔF)與鈾(VI)的濃度在4.0×10-12~4.0×10-11 g/m L范圍內(nèi)呈良好線性關(guān)系,檢出限為1.46×10-12g/m L。工作曲線的線性回歸方程為ΔF=11.9-31.22c(g/m L)。新建方法用于水中鈾酰的測(cè)定,RSD為2.6%-3.8%,加標(biāo)回收率為99.6%-101.5%。與第二章比較該方法檢測(cè)下限更低。第四章在醋酸-醋酸鈉緩沖溶液介質(zhì)中,羅丹明6G具有很強(qiáng)的熒光,溴酸鉀能氧化羅丹明6G(Rh6G)使其熒光強(qiáng)度減弱但速度很慢。痕量鉻(VI)的加入能夠加快該反應(yīng)的速度,使溶液的熒光強(qiáng)度迅速降低。熒光強(qiáng)度降低值隨鉻的加入而增大,據(jù)此建立一種新的催化動(dòng)力學(xué)熒光法測(cè)定環(huán)境水中鉻(VI)的方法。經(jīng)實(shí)驗(yàn)發(fā)現(xiàn),該催化熒光體系的最佳激發(fā)波長(zhǎng)和發(fā)射波長(zhǎng)分別為525 nm和555 nm。在優(yōu)化反應(yīng)和測(cè)定條件,在λmax=555 nm時(shí),熒光值改變值(ΔF)與鉻(VI)的濃度在1.0×10-8~1.4×10-7 g/m L范圍內(nèi)呈良好線性關(guān)系,工作曲線的線性回歸方程為ΔF=2646.4c(μg/m L)-4.57。方法檢出限為3.46×10-9 g/m L,相對(duì)標(biāo)準(zhǔn)偏差小于4.9%,加標(biāo)回收率為95.5%-102.9%。本方法操作簡(jiǎn)便、快速、使用儀器設(shè)備簡(jiǎn)單。
[Abstract]:The significance and current status of the determination of trace uranium and chromium in the environment were introduced in detail. The concept and basic principles of cloud point extraction and two extraction in sample treatment were introduced. The quantitative basis and basic origin of the new method for trace uranium and chromium detection in the newly established environmental samples were described. In the second chapter, in the dilute sulfuric acid medium, uranium exists in the form of uranyl ion (UO22+), which can catalyze the redox reaction of the potassium bromate oxidation fluorescent reagent Luo Danming G (Rh G), which leads to the reduction of the fluorescence intensity of the system. A new determination is established based on the linear relationship between the fluorescence intensity reduction value of the reaction system and the concentration of uranyl ions. The Catalytic Fluorescence Method of uranium in environmental samples shows that the optimum excitation wavelength and emission wavelength of the catalytic fluorescence system are 525 nm and 552 nm., respectively. The linear regression equation of the reduction value of the fluorescence intensity of the reaction system Delta F and uranium (VI) concentration in the range of 6.62 x 10-9~5.2 10-8 g/m L is linear. For Delta F=22.2+52.6 C (g/m L), the correlation coefficient r=0.9992. method detection limit is 2 x 10-9 g/m L. new method can be used for the determination of uranium in water samples, RSD is 2.8%-4.6%, the sample addition recovery rate is 99.3%~102.5%. third chapter on the basis of the chapter of the second chapter, the study first uses two turbid extraction technology to enrich the trace uranium in the sample, and then should be used. The U-salophen complex can be used to catalyze the oxidation of rhodamine G by potassium bromate, and a new method for the determination of trace uranium in complex samples is established by combining the two cloud point extraction technology with the photocatalytic kinetic fluorescence detection method. The new method can be applied to the water quality test of uranium. Under the experimental conditions, the method can be used in the MES-Tris buffer solution. The surfactants Triton X-114 was added to the two cloud point extraction of uranium in the sample. The uranium acyl cation in the sample could be extracted and enriched, then salophen ligand was added to form the U-salophen complex.U-salophen complex with salophen to produce photocatalytic activity. The oxidation of rhodamine G reaction with potassium bromate was reduced, and the fluorescence intensity was reduced. A new method for the determination of uranium (VI) in environmental water by catalytic kinetic spectrophotometric method is established. The optimum excitation wavelength and emission wavelength of the photocatalytic fluorescence system are 525 nm and 553 nm. respectively. The results show that the fluorescence value of the reaction system is changed under the optimum optimum experimental conditions. The concentration of variable value (delta F) and uranium (VI) has a good linear relationship with the range of 4 x 10-12~4.0 x 10-11 g/m L. The linear regression equation of the detection limit of 1.46 x 10-12g/m L. is delta F=11.9-31.22c (g/m L). The new method is used for the determination of uranyl in water, RSD is 2.6%-3.8%, and the rate of recovery is compared with the second chapter. The lower limit is lower. In the fourth chapter, Luo Danming 6G has a strong fluorescence in the medium of acetic acid sodium acetate buffer solution. Potassium bromate can oxidize Luo Danming 6G (Rh6G) to weaken the fluorescence intensity but slow down. The addition of trace chromium (VI) can accelerate the reaction speed and reduce the fluorescence intensity of the solution rapidly. The decrease of fluorescence intensity with the addition of chromium. In addition, a new method for the determination of chromium (VI) in environmental water by catalytic kinetic fluorescence is established. It is found that the optimum excitation wavelength and emission wavelength of the catalytic fluorescence system are 525 nm and 555 nm. respectively in the reaction and determination conditions. At the time of lambda max=555 nm, the concentration of the fluorescence value (delta F) and chromium (VI) is 1 x 10-8~1.4. There is a good linear relationship in the range of X 10-7 g/m L. The linear regression equation of the working curve is delta F=2646.4c (mu g/m L) -4.57. method, the detection limit is 3.46 x 10-9 g/m L, the relative standard deviation is less than 4.9%, the addition recovery rate is 95.5%-102.9%. this method is simple, quick, and easy to use instrument and equipment.
【學(xué)位授予單位】:南華大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:X830
【共引文獻(xiàn)】
相關(guān)期刊論文 前7條
1 王麗雄;古梅;楊亮;楊通在;;硅酸鎂吸附劑的制備及性能表征[J];核化學(xué)與放射化學(xué);2013年06期
2 孫曉霞;宋有濤;李照令;劉宛;臺(tái)培東;李培軍;;Cu脅迫對(duì)擬南芥幼苗錯(cuò)配修復(fù)基因表達(dá)的影響[J];生態(tài)學(xué)雜志;2013年08期
3 MA Ting-Ting;P.CHRISTIE;LUO Yong-Ming;TENG Ying;;Physiological and Antioxidant Responses of Germinating Mung Bean Seedlings to Phthalate Esters in Soil[J];Pedosphere;2014年01期
4 韓琪勝;馬儒超;周志偉;張文龍;;吸附水體中鈾的研究進(jìn)展[J];江西化工;2014年01期
5 陳琳;沈杏;何云飛;徐燦輝;廖力夫;;基于磺基Salophen配位反應(yīng)熒光法測(cè)定鈾酰[J];應(yīng)用化工;2014年05期
6 王曉波;李建國(guó);趙春香;王梅;劉冬英;何凱抒;崔韻詩(shī);;廣州市售食品總鉻和六價(jià)鉻的含量分析[J];食品研究與開(kāi)發(fā);2014年22期
7 伍自力;余孟瑤;陳露;魏靜;王曉琴;胡勇;閆妍;萬(wàn)平;;小立碗蘚對(duì)重金屬鎘脅迫的應(yīng)答特征[J];植物學(xué)報(bào);2015年02期
相關(guān)會(huì)議論文 前1條
1 高軍凱;高鑫;;低濃度含鈾廢水處理技術(shù)研究進(jìn)展[A];2013第一屆中國(guó)指揮控制大會(huì)論文集[C];2013年
相關(guān)博士學(xué)位論文 前4條
1 裘波音;水稻鉻脅迫耐性的遺傳分析與還原型谷胱甘肽緩解鉻毒害的機(jī)理研究[D];浙江大學(xué);2012年
2 楊峰;Cr(Ⅲ)-有機(jī)酸配合物的氧化及其在土壤中的吸附遷移性研究[D];南京農(nóng)業(yè)大學(xué);2013年
3 彭國(guó)文;新型功能化吸附劑的制備及其吸附鈾的試驗(yàn)研究[D];中南大學(xué);2014年
4 于洪梅;在線固相萃取分離富集與檢測(cè)痕量重金屬的研究[D];東北大學(xué);2011年
相關(guān)碩士學(xué)位論文 前8條
1 楊淼;測(cè)定鈾和ATP的雙受體夾心無(wú)線傳感法和熒光法研究[D];南華大學(xué);2013年
2 尹紀(jì)成;基于功能化核酸的汞和鈾酰離子無(wú)線傳感方法研究[D];南華大學(xué);2013年
3 黃建祥;薏米人工濕地在含鉻(Ⅵ)營(yíng)養(yǎng)液處理下的響應(yīng)機(jī)理[D];廣西大學(xué);2012年
4 沈杏;基于Bis-Salophen配合物發(fā)射光譜法檢測(cè)鈾、氟和二磷酸果糖[D];南華大學(xué);2014年
5 陳琳;基于磺基Salophen配合物發(fā)射光譜法測(cè)定鈾和草酸鹽[D];南華大學(xué);2014年
6 朱文會(huì);Cr(Ⅵ)污染地下水修復(fù)的PRB填料實(shí)驗(yàn)研究[D];常州大學(xué);2014年
7 張慧卿;電解錳廢水中Cr~(6+)和Mn~(2+)的去除方法研究[D];中南大學(xué);2014年
8 李萍;鉛離子和鈾酰離子的液晶及熒光生物傳感方法研究[D];湖南大學(xué);2014年
,本文編號(hào):1805479
本文鏈接:http://sikaile.net/kejilunwen/huanjinggongchenglunwen/1805479.html