城市道路網(wǎng)機動車排放預估研究
本文選題:機動車排放 + 排放模型; 參考:《湖南大學》2015年碩士論文
【摘要】:城市機動車數(shù)量的持續(xù)快速增長,導致路網(wǎng)日益擁堵,嚴重影響居民出行需求,同時,也產(chǎn)生了嚴重的環(huán)境污染問題。CO、HC、NO_x等機動車尾氣污染物是造成光化學煙霧、霧霾等現(xiàn)象的重要因素。定量評估交通排放,可以為路網(wǎng)交通尾氣污染評價、交通大氣環(huán)境影響分析、交通法規(guī)制定等提供科學依據(jù)。而以往的尾氣污染物排放量化研究大多從宏觀層面研究路網(wǎng)機動車排放,無法反映車輛運行狀態(tài)或者交通參數(shù)變化引起的排放變化,因此,對城市道路網(wǎng)微觀層次排放預估方法進行研究,具有重大的理論意義和實用價值。本文在現(xiàn)有研究成果的基礎上,分析和對比了國內(nèi)外廣泛使用的機動車排放模型及仿真模型計算原理及適用范圍,選擇了適合城市道路網(wǎng)的微觀排放計算模型──MOVES模型和TSIS交通仿真模型作為排放評估和計算的研究工具。首先,在實際交通調(diào)查的基礎上,選擇清遠市主城區(qū)典型局部路網(wǎng)為研究對象,以微觀交通仿真軟件TSIS對路網(wǎng)進行仿真建模,仿真輸出CO、HC、NO_x等尾氣排放量及交通量、平均速度等動態(tài)交通參數(shù)。同時,結(jié)合美國環(huán)保署開發(fā)的新一代排放模型MOVES,采用兩種方法,即平均速度法和本地化的運行工況分布法,進行城市道路網(wǎng)機動車CO、HC、NO_x等污染物排放量計算。其中,MOVES排放計算中路段交通量和平均速度等交通數(shù)據(jù)來源于經(jīng)標定后的TSIS仿真輸出,實現(xiàn)了路網(wǎng)動態(tài)交通運行特征與先進排放模型的有機結(jié)合。然后,將TSIS仿真排放輸出數(shù)據(jù)CO、HC、NO_x與MOVES兩種方法測算數(shù)據(jù)進行對比分析。最后,本文還提出了在TSIS仿真法和MOVES模型計算法的基礎上進行排放預測的方法,且根據(jù)預測方法對2016年排放進行了預測。排放計算及預測結(jié)果表明:對于小型路網(wǎng),基于TSIS仿真輸出平均速度的MOVES排放計算結(jié)果與基于運行工況分布的MOVES計算結(jié)果相近,誤差約為1.2~7.9%;對于路網(wǎng)各路段上CO和HC排放量,MOVES排放模型與TSIS仿真計算結(jié)果誤差小于10%,而NO_x誤差為13.0~17.0%;在路網(wǎng)未飽和時,污染物排放與交通量有良好線性關系,TSIS仿真軟件和MOVES模型都能用于機動車污染物排放預測。
[Abstract]:The sustained and rapid growth of the number of motor vehicles in urban areas leads to increasing congestion in the road network, which seriously affects the travel demand of residents. At the same time, it also produces serious environmental pollution problems, such as motor vehicle exhaust pollutants such as HCNOX, which cause photochemical smog. Haze and other important factors of phenomena. The quantitative assessment of traffic emissions can provide scientific basis for the assessment of road network traffic exhaust pollution, traffic atmospheric environment impact analysis, traffic regulations and so on. However, most of the previous studies on emission of exhaust gas pollutants from the macro level can not reflect the emission changes caused by the vehicle running state or the change of traffic parameters. It is of great theoretical significance and practical value to study the micro level emission estimation method of urban road network. Based on the existing research results, this paper analyzes and compares the calculation principle and applicable range of vehicle emission model and simulation model which are widely used at home and abroad. The MOVES model and the TSIS traffic simulation model, which are suitable for the urban road network, are selected as the research tools for emission assessment and calculation. First of all, based on the actual traffic investigation, the typical local road network in Qingyuan City is selected as the research object, and the simulation model of the road network is built with the microscopic traffic simulation software TSIS, and the emission and traffic volume of exhaust gas such as COHCOHCOHCOHCONOX and the traffic volume are simulated and outputted. Dynamic traffic parameters such as average speed. At the same time, combined with MOVES, a new generation emission model developed by EPA, two methods, average speed method and localized operating condition distribution method, are used to calculate the emission of pollutants such as COHCOHCOHCON NOX in urban road networks. The traffic data, such as traffic volume and average speed, are derived from the calibrated TSIS simulation output, which realizes the organic combination of the dynamic traffic characteristics of road network and the advanced emission model. Then, the TSIS emulation emission output data are compared with the MOVES data. Finally, based on the TSIS simulation method and the MOVES model calculation method, the method of emission prediction is put forward, and the 2016 emission is predicted according to the prediction method. The results of emission calculation and prediction show that the calculated results of MOVES emissions based on the average output velocity of TSIS simulation are similar to those of MOVES based on the distribution of operating conditions for small road networks. The error is about 1.2% 7.9.The error between the emulation model of CO and HC emissions and TSIS simulation results is less than 10, but the error of NO_x is 13.00.When the road network is not saturated, the error of MOVES emission model is less than 10, and the error of NO_x is 13.00.When the road network is not saturated, There is a good linear relationship between pollutant emission and traffic volume. TSIS simulation software and MOVES model can be used for vehicle pollutant emission prediction.
【學位授予單位】:湖南大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:U491.9;X734.2
【參考文獻】
相關期刊論文 前10條
1 陳軍輝;范武波;錢駿;李媛;趙文艷;;利用IVE模型建立成都市輕型汽油客車排放清單[J];環(huán)境科學學報;2015年07期
2 王曉寧;劉海洋;李亭慧;鄧可;;CMEM用于我國柴油公交車排放計算[J];哈爾濱工業(yè)大學學報;2012年06期
3 郭棟;高松;鄒廣德;譚德榮;王曉原;邵金菊;;城市區(qū)域機動車排放定量評價方法[J];交通運輸工程學報;2012年01期
4 廖瀚博;余志;周兵;劉永紅;畢索陽;蔡銘;羅威力;;廣州市機動車尾氣排放特征研究[J];環(huán)境科學與技術(shù);2012年01期
5 鄒智軍;;新一代交通仿真技術(shù)綜述[J];系統(tǒng)仿真學報;2010年09期
6 黃冠濤;宋國華;于雷;胥耀方;;綜合移動源排放模型——MOVES[J];交通信息與安全;2010年04期
7 吳孟庭;李鐵柱;;路段公交專用道對車輛燃油消耗與污染物排放的影響分析[J];交通運輸工程與信息學報;2009年03期
8 李小林;張翊;李嘉;;仿真技術(shù)在道路交通大氣環(huán)境影響分析中的應用研究[J];公路工程;2008年05期
9 徐成偉;吳超仲;初秀民;鞏晶;;城市機動車尾氣排放測試方法模型與應用及展望[J];華東公路;2008年05期
10 馬因韜;劉啟漢;雷國強;李潭峰;欒勝基;;機動車排放模型的應用及其適用性比較[J];北京大學學報(自然科學版);2008年02期
相關博士學位論文 前1條
1 雷偉;城市道路交通排放的仿真優(yōu)化研究[D];武漢理工大學;2011年
相關碩士學位論文 前10條
1 王芳;基于低碳交通的信號交叉口優(yōu)化控制研究[D];湖南大學;2014年
2 張凱;西安市機動車尾氣污染控制研究[D];長安大學;2014年
3 孫晉偉;公路客運站車輛排放評價研究[D];長安大學;2014年
4 張廣昕;基于運行模式的平面交叉口車輛排放研究[D];長安大學;2013年
5 呂寧寧;基于MOVES的交通排放評價系統(tǒng)及優(yōu)化[D];長安大學;2012年
6 許伶俐;我國汽車保有量的預測研究[D];東北財經(jīng)大學;2011年
7 黃冠濤;基于MOVES的微觀層次交通排放評價[D];北京交通大學;2011年
8 劉娟娟;基于VSP分布的油耗和排放的速度修正模型研究[D];北京交通大學;2010年
9 孫鳳艷;基于微觀交通仿真的城市道路交叉口減排方法研究[D];吉林大學;2008年
10 王志彪;VISSIM交通仿真適用性研究[D];北京交通大學;2007年
,本文編號:1794306
本文鏈接:http://sikaile.net/kejilunwen/huanjinggongchenglunwen/1794306.html