厭氧選擇性脫氮除硫的調(diào)控影響因素研究及微生物群落結(jié)構(gòu)分析
本文選題:電子受體 + N/S; 參考:《西安建筑科技大學(xué)》2015年碩士論文
【摘要】:本文主要針對(duì)厭氧脫氮除硫工藝中,以降低硫化物和NO3-的出水濃度及提高單質(zhì)硫和氮?dú)獾霓D(zhuǎn)化率為目標(biāo),主要研究了N/S、停留時(shí)間、電子受體類型、硫化物負(fù)荷和進(jìn)水p H等調(diào)節(jié)因子對(duì)厭氧選擇性脫氮除硫的影響,得出厭氧選擇性脫氮除硫的調(diào)控條件。主要結(jié)論如下:(1)以NO3-為電子受體,去除硫化物最佳N/S 0.67,去除NO3-最佳N/S比為0.5~1.0,最佳產(chǎn)單質(zhì)硫N/S為0.5,可見(jiàn)控制N/S為0.5~1.0可實(shí)現(xiàn)同步脫氮除硫;以NO2-為電子受體,去除硫化物最佳N/S為0.67,去除NO2-最佳N/S為0.2~1.0,去除率均達(dá)99%以上,脫氮不受抑制,NO2-的去除率高于NO3-的去除率,表明硫化物可以快速去除NO2-,是亞硝酸鹽體系反硝化脫氮的適宜電子供體。(2)以NO3-為電子受體,水力停留時(shí)間24h,N/S為0.5選擇性生成單質(zhì)硫達(dá)24%,選擇性生成硫酸鹽為30%,選擇性生成氮?dú)釴/S為1.0,產(chǎn)氮?dú)饬窟_(dá)58m L。以NO2-為電子受體,水力停留時(shí)間24h,N/S為0.67選擇性生成單質(zhì)硫達(dá)11.01%,選擇性生成硫酸鹽為53.58%,選擇性生成氮?dú)釴/S值為2.0,產(chǎn)氮?dú)饬窟_(dá)74m L。表明電子受體對(duì)單質(zhì)硫的選擇性更明顯,以NO3-為電子受體產(chǎn)生的單質(zhì)硫高于以NO2-為電子受體。亞硝酸鹽體系氮?dú)猱a(chǎn)生規(guī)律與硝酸鹽體系明顯不同,表明二者轉(zhuǎn)化途徑可能不同,NO3-主要通過(guò)自養(yǎng)反硝化脫氮過(guò)程去除,而NO2-主要通過(guò)厭氧氨氧化、異養(yǎng)反硝化等作用去除。(3)當(dāng)N/S為1.0~2.0條件下,進(jìn)水硫化物濃度在150~350mg/L時(shí),水力停留時(shí)間24h,出水硫化物濃度均小于4.2mg/L,去除率高達(dá)98%,當(dāng)進(jìn)水硫化物提高到400mg/L時(shí),脫硫受到抑制。當(dāng)N/S為0.5~0.67,進(jìn)水硫化物濃度150~250mg/L,水力停留時(shí)間24h,出水NO3-濃度小于14mg/L,去除率均大于70%,進(jìn)水硫化物濃度提高到300mg/L,脫氮受到抑制。表明提高硫化物負(fù)荷,進(jìn)水硫化物濃度高于250mg/L時(shí)脫氮受到抑制,而進(jìn)水硫化物濃度高于350mg/L時(shí)脫硫才受到抑制。(4)在進(jìn)水硫化物濃度為250~400mg/L,N/S為1.0條件下,選擇性生成單質(zhì)硫最高達(dá)33.2%,選擇性生成硫酸鹽為36.04%,表明提高硫化物負(fù)荷有利于選擇性生成單質(zhì)硫。進(jìn)水硫化物濃度為150~300mg/L,N/S為0.5條件下,選擇性生成氮?dú)庾罡哌_(dá)64m L,表明提高硫化物負(fù)荷,高N/S并不利于選擇性生成氮?dú)狻?5)當(dāng)進(jìn)水硫化物濃度為200mg/L,水力停留時(shí)間24h,去除硫化物最佳進(jìn)水p H=7.5~8.0,去除NO3-最佳進(jìn)水p H=8.5~9.0。當(dāng)進(jìn)水硫化物濃度為300mg/L,水力停留時(shí)間48h,去除硫化物最佳進(jìn)水p H=7.5~9.0,去除NO3-最佳進(jìn)水p H=8.5~9.0。(6)對(duì)于不同硫化物負(fù)荷系統(tǒng),最佳選擇性生成單質(zhì)硫進(jìn)水p H=7.5~8.0,選擇性生成單質(zhì)硫最高達(dá)30%,對(duì)應(yīng)選擇性生成硫酸鹽為10.21%。選擇性生成氮?dú)庾罴堰M(jìn)水p H=8.5~9.0,水力停留24h,產(chǎn)氮?dú)饬孔畲筮_(dá)60m L。(7)反應(yīng)器內(nèi)以形成Sulfurovum、Kluyvera為主的脫硫、脫氮功能微生物;反應(yīng)器內(nèi)優(yōu)勢(shì)菌種數(shù)量隨著進(jìn)水p H值的升高而減少,同時(shí)提高進(jìn)水硫化物濃度和進(jìn)水p H值,反應(yīng)器群落多樣性減小。
[Abstract]:In order to reduce the effluent concentration of sulfides and NO3- and increase the conversion of sulfur and nitrogen, the N / S, residence time and electron receptor type were studied in this paper. The influence of sulfide loading and influent pH on anaerobic selective denitrification and sulfur removal was studied and the control conditions of anaerobic selective nitrogen and sulfur removal were obtained. The main conclusions are as follows: (1) with no _ 3- as the electron receptor, the best N / S _ (0.67), the best N / S / S ratio and the N / S ratio are 0.5 ~ 1.0 and 0.5 respectively. It can be seen that the nitrogen and sulfur removal can be achieved by controlling N / S as 0.5 ~ (1.0), and no _ 2- as an electron receptor. The best N / S ratio for sulfides removal was 0.67, and the best N / S removal rate for no _ 2-N _ 2- was 0.2n ~ (-1), and the removal rates were all above 99%. The removal rate of no _ 2-- was higher than that of no _ 3-, and the removal rate of no _ 2- was higher than that of no _ 3-. The results show that sulfide can remove no _ 2-rapidly and is the suitable electron donor for denitrification and denitrification in nitrite system. The HRT was 0.5 h ~ (-1) to form sulfur, 30% sulfate, 1.0% N ~ (2 +), and 58 m / L N ~ (2 +), respectively. With no _ 2- as the electron acceptor, HRT = 0.67 N / S = 0.67 to form elemental sulfur, 53.58 sulfates, 2.0 N / S, and 74 mL N / L, selective formation of sulfate, N / S and N ~ (2 +), N _ (2 / S) and N ~ (2 +), N _ (2 / S) and N ~ (2 +) N / S = 0.67, respectively. The results showed that the selectivity of electron receptors to elemental sulfur was more obvious than that of no _ 3- as electron receptors. The pattern of nitrogen production in nitrite system is obviously different from that in nitrate system, which indicates that the two transformation pathways may be different from each other, and no _ 2- may be removed mainly by autotrophic denitrification, while no _ 2- is mainly oxidized by anaerobic ammonia. Heterotrophic denitrification removal. 3) when N / S is 1.0 ~ (2.0), when the influent sulfide concentration is in 150~350mg/L, the HRT is 24 h, the effluent sulfide concentration is less than 4.2 mg / L, the removal rate is as high as 98%. When the influent sulfide is increased to 400mg/L, the desulfurization is inhibited. When N / S is 0.5 ~ 0.67, influent sulfide concentration is 150 ~ 250 mg / L, HRT is 24 h, effluent NO3- concentration is less than 14 mg / L, removal rate is more than 70%, influent sulfide concentration is increased to 300 mg / L, denitrification is inhibited. The results show that when sulphide concentration in influent is higher than 250mg/L, denitrification is inhibited when sulphide concentration is higher than 350mg/L, and desulfurization is inhibited only when influent sulfide concentration is higher than 350mg/L. The selective formation of elemental sulfur is up to 33.2 and the selective formation of sulphate is 36.04, which indicates that increasing the sulphide load is beneficial to the selective formation of elemental sulfur. When the influent sulfides concentration is 150 ~ 300mg / L ~ (-1) N / S = 0.5, the highest selective nitrogen generation is 64 mL, which indicates that the sulphide load is increased. When the influent sulfide concentration is 200 mg / L, the HRT is 24 h, the best influent water pH is 7.5% 8.0 and no 3- is 8.5% 9. 0 when the influent sulfide concentration is 200 mg / L and the hydraulic retention time is 24 h, the high N / S is not suitable for the selective formation of nitrogen gas. When the influent sulfide concentration is 300 mg / L, the HRT is 48 h, the best influent water for removing sulfides is 7.5U 9.0, and the best influent no _ 3- is 8.5 mg / L, 9.0.60) for different sulfides loading systems, The optimum selectivity for the formation of elemental sulfur in influent was 7.5 ~ 8.0, and the maximum of selective formation of elemental sulfur was 30. The corresponding selective formation of sulphate was 10.21. The optimum influent pH of selective nitrogen production was 8.5c9.0, the hydraulic retention was 24h, and the maximum nitrogen and gas production was 60m 路L ~ (7)) in the reactor, the desulfurization and denitrification function of Sulfurovum Kluyvera was formed, and the number of dominant bacteria in the reactor decreased with the increase of influent pH value. At the same time, the diversity of reactor community was reduced by increasing influent sulfide concentration and influent pH value.
【學(xué)位授予單位】:西安建筑科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:X703
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉軍,王斌,潘登,李泗清,汪蘋;好氧脫氮過(guò)程中脫氮途徑的初探[J];工業(yè)水處理;2003年11期
2 吳韓;湯兵;;移動(dòng)床生物膜反應(yīng)器脫氮除磷研究進(jìn)展[J];廣東化工;2011年04期
3 廖德祥,李小明,曾光明,楊國(guó)靖,謝珊,吳永明;全程自養(yǎng)脫氮新工藝[J];中國(guó)給水排水;2004年04期
4 潘登,劉軍,王斌,汪蘋;廢水處理中的非傳統(tǒng)脫氮途徑[J];城市環(huán)境與城市生態(tài);2003年06期
5 王華;王京偉;杜剛;;養(yǎng)殖水體中微生物全程自養(yǎng)脫氮初步研究[J];水產(chǎn)科學(xué);2010年05期
6 HansJürgenGrabke;江先雄;;鐵在氣氛中滲碳、脫碳及氮化、脫氮時(shí)其表面反應(yīng)的動(dòng)力學(xué)和機(jī)理[J];國(guó)外金屬熱處理;1990年01期
7 楊國(guó)靖;史興;周吉娜;樓佩蕓;鐘琳偉;唐佳;;同步脫氮除磷好氧顆粒污泥的特性及其反應(yīng)過(guò)程[J];浙江萬(wàn)里學(xué)院學(xué)報(bào);2009年02期
8 王景峰;金敏;諶志強(qiáng);邱志剛;張斌;孔慶鑫;李君文;;1株好氧脫氮菌的篩選與脫氮特性研究[J];環(huán)境科學(xué);2011年08期
9 占天剛;王曉昌;袁宏林;金鵬康;;生物造粒流化床脫氮除磷研究[J];水處理技術(shù);2007年03期
10 楊超;陳紅梅;龍騰銳;郭勁松;;以羥胺為底物的自養(yǎng)脫氮微量熱研究[J];環(huán)境工程學(xué)報(bào);2012年04期
相關(guān)會(huì)議論文 前3條
1 馮麗娟;徐劍;朱亮;徐向陽(yáng);陳云龍;;植物生物質(zhì)強(qiáng)化污染水源水生物膜修復(fù)工藝脫氮及農(nóng)藥類環(huán)境激素去除[A];2012中國(guó)環(huán)境科學(xué)學(xué)會(huì)學(xué)術(shù)年會(huì)論文集(第三卷)[C];2012年
2 陳兆平;陳建斌;黃宗澤;;不銹鋼冶煉過(guò)程中吸氮和脫氮的動(dòng)力學(xué)模型及應(yīng)用[A];2006中國(guó)金屬學(xué)會(huì)青年學(xué)術(shù)年會(huì)會(huì)刊[C];2006年
3 陳兆平;陳建斌;黃宗澤;;不銹鋼冶煉過(guò)程中吸氮和脫氮的動(dòng)力學(xué)模型及應(yīng)用[A];2006中國(guó)金屬學(xué)會(huì)青年學(xué)術(shù)年會(huì)論文集[C];2006年
相關(guān)博士學(xué)位論文 前2條
1 姜欣欣;基于A/O/A運(yùn)行模式的SBR工藝脫氮除磷效能及其微生物特性研究[D];哈爾濱工業(yè)大學(xué);2011年
2 陳永志;A~2/O-BAF系統(tǒng)深度脫氮除磷[D];北京工業(yè)大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 劉攀龍;河流脫氮微生物的篩選及脫氮特性研究[D];鄭州大學(xué);2015年
2 路雪婷;生物反歧化脫氮工藝研究[D];陜西科技大學(xué);2015年
3 阮泳馨;厭氧選擇性脫氮除硫的調(diào)控影響因素研究及微生物群落結(jié)構(gòu)分析[D];西安建筑科技大學(xué);2015年
4 李海云;脫氮微生物制劑的研制[D];山西大學(xué);2004年
5 謝繼慈;營(yíng)養(yǎng)濃度對(duì)單級(jí)好氧生物脫氮除磷的影響研究[D];湖南大學(xué);2014年
6 張曉昕;好氧顆粒污泥的形成及其同步脫氮除磷效能研究[D];哈爾濱工業(yè)大學(xué);2011年
7 韓永和;脫氮除磷微生物的分離鑒定及與植物聯(lián)合處理含氮磷廢水的研究[D];福建師范大學(xué);2013年
8 吳健;A-A-O-MBR組合工藝對(duì)餐廚廢水深度脫氮的應(yīng)用研究[D];江南大學(xué);2014年
9 魏清娟;低溫脫氮菌劑的制備及其強(qiáng)化人工濕地脫氮效能研究[D];哈爾濱工業(yè)大學(xué);2015年
10 羅富金;螺旋升流式反應(yīng)器脫氮 除磷效果及污泥特性的試驗(yàn)研究[D];重慶大學(xué);2004年
,本文編號(hào):1788409
本文鏈接:http://sikaile.net/kejilunwen/huanjinggongchenglunwen/1788409.html