銻對(duì)不同植物的毒理效應(yīng)及其土壤生態(tài)基準(zhǔn)研究
本文選題:土壤環(huán)境基準(zhǔn) 切入點(diǎn):土壤植物 出處:《華北電力大學(xué)(北京)》2016年碩士論文
【摘要】:銻(Sb)是一種有毒致癌元素,破壞植物細(xì)胞代謝等活動(dòng)。在土壤中被植物所吸收,積累于根莖葉中,繼而進(jìn)入到食物鏈,危害人體健康。當(dāng)前,關(guān)于我國(guó)土壤中銻的生態(tài)毒理數(shù)據(jù)相對(duì)較少,并且試驗(yàn)設(shè)計(jì)及毒性測(cè)試方法等方面欠規(guī)范,所選物種敏感性不同、土質(zhì)不同,真正能用于推導(dǎo)生態(tài)基準(zhǔn)值的數(shù)據(jù)嚴(yán)重不足,目前獲得的土壤生態(tài)毒理效應(yīng)數(shù)據(jù)比較零星、分散、缺乏系統(tǒng)整理。導(dǎo)致土壤中銻的環(huán)境質(zhì)量標(biāo)準(zhǔn)制訂嚴(yán)重滯后,不利于國(guó)家的土壤環(huán)境管理。因此,應(yīng)根據(jù)基于生態(tài)毒理實(shí)驗(yàn)獲取污染物的劑量效應(yīng)關(guān)系,建立基于不同評(píng)價(jià)終點(diǎn)的污染物的毒性閾值,對(duì)于不同的環(huán)境目標(biāo),不同土質(zhì)及受體,考慮地域差別,對(duì)相應(yīng)參數(shù)、評(píng)估因子就行校正調(diào)整,以適應(yīng)本土環(huán)境條件及特點(diǎn),最終用于土壤生態(tài)基準(zhǔn)值的推導(dǎo)。本研究以酒石酸銻鉀為目標(biāo)污染物,選取砂土、潮土、紅壤及黑土四種不同類(lèi)型土壤,向各個(gè)土樣中添加一系列濃度的酒石酸銻鉀溶液進(jìn)行老化研磨篩分后,按照我國(guó)化學(xué)品測(cè)試方法及ISO標(biāo)準(zhǔn)化方法中相關(guān)步驟與原則,進(jìn)行種子發(fā)芽、根伸長(zhǎng)試驗(yàn)以及早期生長(zhǎng)毒性試驗(yàn),研究了銻對(duì)植物的生態(tài)毒理效應(yīng)并得出銻對(duì)植物根伸長(zhǎng)及株高10%抑制的毒性閾值(EC1o);同時(shí)探討了土壤性質(zhì)對(duì)毒性閾值的影響,初步構(gòu)建了可預(yù)測(cè)不同土壤性質(zhì)土壤中銻的毒性閾值的模型,推導(dǎo)出銻的生態(tài)基準(zhǔn)值。試驗(yàn)結(jié)果表明:隨著銻濃度升高,大麥、小麥、黃瓜種子發(fā)芽率及根長(zhǎng)呈現(xiàn)先升高后下降的趨勢(shì),低濃度銻顯示出刺激生長(zhǎng)的作用,黃瓜受抑制作用最顯著;植物根伸長(zhǎng)抑制試驗(yàn)得到大麥、燕麥及油菜的根長(zhǎng)與株高,在一系列濃度的外源銻作用下,對(duì)根長(zhǎng)和株高表現(xiàn)出相似的毒害作用規(guī)律,總體呈降低趨勢(shì),EC10的值略有不同,在不同土質(zhì)中的抑制率與顯著性有很大差別。通過(guò)小麥的早期生長(zhǎng)毒性試驗(yàn)得知,植物生物量也會(huì)隨著銻濃度的升高而降低,低濃度時(shí)生物量有所增加,植株干重及鮮重對(duì)銻毒害反應(yīng)敏感,抑制率大,更適宜做評(píng)估指標(biāo)。土壤pH、OC、CEC對(duì)銻的毒性閾值影響較大,基于pH、OC及CEC的3因子預(yù)測(cè)模型可用來(lái)預(yù)測(cè)不同類(lèi)型土壤中銻的毒性閾值,但仍需大量不同類(lèi)型土壤及不同植物的毒理試驗(yàn)數(shù)據(jù)去驗(yàn)證,通過(guò)本研究所得數(shù)據(jù)及查閱文獻(xiàn)相關(guān)數(shù)據(jù),構(gòu)造物種敏感性分布曲線(xiàn),推導(dǎo)出HC5值,得到土壤銻生態(tài)基準(zhǔn)值為23.2mg/Kg,可在一定程度上為我國(guó)土壤中銻的生態(tài)基準(zhǔn)值制定提供參考數(shù)據(jù)。
[Abstract]:SB) is a toxic carcinogenic element that destroys plant cell metabolism and other activities. It is absorbed by plants in the soil, accumulated in rhizomes and leaves, and then entered into the food chain, endangering human health. There are relatively few ecotoxicological data of antimony in soils in China, and the experimental design and toxicity testing methods are not standardized. The species selected are sensitive and soil quality is different, so the data that can be used to derive the ecological reference value is seriously insufficient. The data of soil ecotoxicological effects obtained at present are scattered, scattered and lack of systematic collation. As a result, the establishment of environmental quality standards for antimony in soil is seriously lagging behind, which is not conducive to the management of soil environment in the country. According to the dose-effect relationship of pollutants based on ecotoxicological experiments, the toxic threshold of pollutants based on different evaluation endpoints should be established. For different environmental targets, different soil quality and receptors, the corresponding parameters should be taken into account. The evaluation factors were adjusted to adapt to the local environmental conditions and characteristics, and were finally used to deduce the soil ecological reference value. In this study, four different types of soil, sandy soil, tidal soil, red soil and black soil, were selected as the target pollutants, and potassium antimony tartrate was used as the target pollutant. After adding a series of concentration of potassium antimony tartrate solution to each soil sample for grinding and screening, seed germination was carried out according to the relevant steps and principles of chemical testing method and ISO standardization method in our country. The ecotoxicological effects of antimony on plants were studied by root elongation test and early growth toxicity test. The toxicity threshold of antimony to plant root elongation and plant height was obtained, and the effect of soil properties on toxicity threshold was discussed. A preliminary model for predicting the toxicity threshold of antimony in soils with different soil properties was established, and the ecological reference value of antimony was derived. The results showed that: with the increase of antimony concentration, barley and wheat, The seed germination rate and root length of cucumber increased first and then decreased, the low concentration of antimony showed the effect of stimulating growth, the inhibitory effect of cucumber was the most obvious, and the root length and plant height of barley, oat and rape were obtained by plant root elongation inhibition test. Under a series of concentrations of exogenous antimony, the root length and plant height showed a similar toxic effect, and the value of EC10 decreased slightly. Through the early growth toxicity test of wheat, the plant biomass also decreased with the increase of antimony concentration, and the biomass increased at low concentration. The plant dry weight and fresh weight were sensitive to antimony toxicity, and the inhibition rate was high, so it was more suitable to be used as an evaluation index. The threshold of antimony toxicity was greatly affected by soil pH ~ (2 +) OCCEC, and the three-factor prediction model based on pH ~ (2 +) OC and CEC could be used to predict the toxicity threshold of antimony in different types of soil. But it still needs a large number of toxicological test data of different types of soil and different plants to verify. The sensitivity distribution curve of structure species is derived from the data obtained from this study and the related data of literature, and the HC5 value is deduced. The ecological reference value of soil antimony is 23.2 mg / kg, which can provide reference data for the establishment of ecological reference value of antimony in Chinese soil to some extent.
【學(xué)位授予單位】:華北電力大學(xué)(北京)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:X171.5;X53
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 解瑞麗;周啟星;;丙烯酰胺的環(huán)境暴露、生態(tài)行為與毒理效應(yīng)研究進(jìn)展[J];生態(tài)學(xué)雜志;2013年05期
2 楊福林;高菲;;淺談霧霾天氣的環(huán)境毒理效應(yīng)[J];安徽農(nóng)學(xué)通報(bào);2013年16期
3 李兆利;陳海剛;徐韻;孔志明;;3種獸藥及飼料添加劑對(duì)魚(yú)類(lèi)的毒理效應(yīng)[J];生態(tài)與農(nóng)村環(huán)境學(xué)報(bào);2006年01期
4 ;“稀土農(nóng)用的環(huán)境化學(xué)行為及生態(tài)、毒理效應(yīng)”研究取得成效[J];中國(guó)科學(xué)基金;2003年03期
5 王文;周細(xì)紅;廖柏寒;李林;曾清如;;硫脲對(duì)花生苗期的毒理效應(yīng)研究[J];農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào);2009年07期
6 田秀梅,周啟星,王林山;氯烴類(lèi)污染物的生態(tài)行為與毒理效應(yīng)研究進(jìn)展[J];生態(tài)學(xué)雜志;2005年10期
7 辛晨;楊二艷;;汾河太原段冬季污水對(duì)小鼠肝臟毒理效應(yīng)探究[J];合肥學(xué)院學(xué)報(bào)(自然科學(xué)版);2009年04期
8 孫冰;高志鷹;朱小梅;秦薇;楊世莉;嚴(yán)志宇;李躍全;姜宏偉;;溢油對(duì)菲律賓蛤仔急性毒理效應(yīng)研究[J];海洋環(huán)境科學(xué);2013年06期
9 孟順龍;徐跑;瞿建宏;宋超;范立民;裘麗萍;陳家長(zhǎng);;滅多威在環(huán)境中的殘留與毒理效應(yīng)研究進(jìn)展[J];生態(tài)學(xué)雜志;2013年09期
10 孫翰昌;丁詩(shī)華;陳大慶;黃麗英;唐毅;耿曉修;張芬;;Cu~(2+)對(duì)中華倒刺渻抗氧化功能的毒理效應(yīng)[J];農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào);2006年01期
相關(guān)會(huì)議論文 前8條
1 夏f^娟;秦曉飛;陳征燕;秦占芬;;電子垃圾粉末對(duì)小鼠的毒理效應(yīng)研究[A];第五屆全國(guó)環(huán)境化學(xué)大會(huì)摘要集[C];2009年
2 羅民波;沈新強(qiáng);;微囊藻毒素對(duì)小白鼠肝臟的毒理效應(yīng)[A];中國(guó)水產(chǎn)學(xué)會(huì)第七屆漁業(yè)資源與環(huán)境分會(huì)2004年度學(xué)術(shù)研討會(huì)論文摘要匯編[C];2004年
3 薛秀玲;袁東星;;有機(jī)磷農(nóng)藥對(duì)縊蟶組織形態(tài)學(xué)的影響[A];第三屆全國(guó)環(huán)境化學(xué)學(xué)術(shù)大會(huì)論文集[C];2005年
4 曲娜;朱本占;;鹵代醌類(lèi)化合物的蛋白毒理效應(yīng)[A];中國(guó)化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第02分會(huì)場(chǎng)摘要集[C];2010年
5 江桂斌;;持久性有毒污染物的環(huán)境化學(xué)行為與毒理效應(yīng)[A];中國(guó)毒理學(xué)會(huì)第四屆全國(guó)學(xué)術(shù)會(huì)議論文(摘要)集[C];2005年
6 張建海;梁琛;萬(wàn)斌;呂琪妍;郭良宏;;羧基化多壁碳納米管的雄性大鼠生殖毒理效應(yīng)研究[A];中國(guó)化學(xué)會(huì)第28屆學(xué)術(shù)年會(huì)第2分會(huì)場(chǎng)摘要集[C];2012年
7 秦文弟;楊柳燕;;水華藍(lán)藻細(xì)胞提取物對(duì)實(shí)驗(yàn)鼠毒理效應(yīng)研究進(jìn)展[A];中國(guó)毒理學(xué)會(huì)環(huán)境與生態(tài)毒理學(xué)專(zhuān)業(yè)委員會(huì)第二屆學(xué)術(shù)研討會(huì)暨中國(guó)環(huán)境科學(xué)學(xué)會(huì)環(huán)境標(biāo)準(zhǔn)與基準(zhǔn)專(zhuān)業(yè)委員會(huì)2011年學(xué)術(shù)研討會(huì)會(huì)議論文集[C];2011年
8 賀廣興;路嬋;鄧啟紅;;空氣懸浮顆粒物的毒理效應(yīng)[A];全國(guó)暖通空調(diào)制冷2010年學(xué)術(shù)年會(huì)資料集[C];2010年
相關(guān)碩士學(xué)位論文 前8條
1 鞠鑫;銻對(duì)不同植物的毒理效應(yīng)及其土壤生態(tài)基準(zhǔn)研究[D];華北電力大學(xué)(北京);2016年
2 董霞;納米二氧化鈦的體內(nèi)生物毒理效應(yīng)研究[D];浙江工業(yè)大學(xué);2009年
3 謝嘉;芘(pyrene)脅迫對(duì)馬氏珠母貝的毒理效應(yīng)研究[D];海南大學(xué);2013年
4 畢亞梅;余氯對(duì)浮游生物毒理效應(yīng)及損失量初步評(píng)估[D];上海海洋大學(xué);2011年
5 王思義;BiVO_4晶相和形貌對(duì)淡水微藻毒理效應(yīng)影響的研究[D];暨南大學(xué);2012年
6 梁仕杰;實(shí)驗(yàn)紅鯽對(duì)苯酚的生化毒理效應(yīng)的研究[D];南華大學(xué);2012年
7 張雁慧;基于HSPs響應(yīng)的氮脅迫下秀麗隱桿線(xiàn)蟲(chóng)的毒理效應(yīng)[D];東北師范大學(xué);2012年
8 聶鳳琴;多溴聯(lián)苯醚對(duì)鯽魚(yú)分子毒理效應(yīng)的研究[D];南京農(nóng)業(yè)大學(xué);2009年
,本文編號(hào):1668051
本文鏈接:http://sikaile.net/kejilunwen/huanjinggongchenglunwen/1668051.html