基于粒子濾波的耐火材料聲發(fā)射源信號恢復方法研究
本文選題:耐火材料 + 聲發(fā)射源信號; 參考:《武漢科技大學》2016年碩士論文
【摘要】:耐火材料在各種熱工設備和高溫容器中作為抵抗高溫作用的結構材料和內(nèi)襯,對保障高溫設備安全運行具有重要意義。受實際工況和環(huán)境的影響,耐火材料損傷嚴重危害設備正常運行,甚至爐內(nèi)產(chǎn)品質(zhì)量。因此對耐火材料損傷識別具有重要意義;诼暟l(fā)射信號分析的耐火材料損傷識別已成當前研究熱點,但受傳遞通道影響,失真聲發(fā)射源信息直接影響損傷識別的準確性。為此本文對聲發(fā)射源信號的恢復展開了研究,主要研究內(nèi)容如下:(1)針對聲發(fā)射系統(tǒng)同時包含非線性和線性情況的特點,本文提出基于改進Rao-Blackwellized粒子濾波(RBPF)的源信號恢復方法,通過結合狀態(tài)空間模型來對系統(tǒng)狀態(tài)即源信號進行估計,并從理論和實驗兩個角度驗證了改進RBPF在耐火材料聲發(fā)射信號上的恢復可行性及優(yōu)勢。(2)為了建立合適的聲發(fā)射系統(tǒng)模型,本文針對聲發(fā)射信號和地震波信號具有相似性的特點,通過引入地震波模型并修改參數(shù)建立了聲發(fā)射系統(tǒng)狀態(tài)空間模型,然后結合標準PF、RBPF和改進RBPF對實驗采集的耐火材料損傷聲發(fā)射信號進行源信號恢復,根據(jù)仿真驗證對三種恢復信號分配了權值,求得了最接近真實值的信號,將求得的信號與三種算法的恢復結果進行對比之后,得出改進RBPF算法最優(yōu)的結論。(3)為了進一步說明源信號恢復效果,對采集信號和源信號進行了功率譜分析,兩種情況下基體開裂的主頻成分分別為6~8kHz和5~9kHz,基質(zhì)裂紋擴展的主頻成分分別為40~60kHz和10~20kHz,通過之前分析發(fā)現(xiàn)改進RBPF的恢復效果更具有代表性,使用該算法后基體開裂和基質(zhì)裂紋擴展所對應的主頻成分應分別為5~9kHz和10~20kHz。本文提出的基于改進RBPF算法的信號恢復方法不僅對耐火材料聲發(fā)射源信號進行了有效的恢復,而且對其損傷模式的識別提供了更為準確的依據(jù),為材料損傷研究提供了新的思路。
[Abstract]:Refractories are used as structural materials and liners to resist high temperature in various thermal equipment and high temperature vessels, which is of great significance to ensure the safe operation of high temperature equipment. Under the influence of actual working conditions and environment, the damage of refractories seriously endangers the normal operation of equipment and even the quality of products in the furnace. Therefore, it is of great significance to identify the damage of refractories. The damage identification of refractories based on acoustic emission signal analysis has become a hot topic at present, but the distortion of acoustic emission source information directly affects the accuracy of damage identification due to the influence of transmission channels. In this paper, the recovery of acoustic emission source signal is studied. The main research contents are as follows: (1) aiming at the nonlinear and linear characteristics of acoustic emission system, a method of source signal recovery based on improved Rao-Blackwellized particle filter is proposed in this paper. By combining the state space model to estimate the state of the system, that is, the source signal, In order to establish a suitable acoustic emission system model, this paper aims at the similarity between acoustic emission signal and seismic wave signal, and verifies the feasibility and advantage of improving RBPF recovery on refractory acoustic emission signal from both theoretical and experimental points of view in order to establish a suitable acoustic emission system model, this paper aims at the characteristics of similarity between acoustic emission signal and seismic wave signal. The state space model of acoustic emission system is established by introducing seismic wave model and modifying parameters, and then the source signal of experimental refractory damage acoustic emission signal is recovered by combining standard PFN RBPF and improved RBPF. According to the simulation results, the weights are assigned to the three kinds of recovery signals, and the signals closest to the true values are obtained. After comparing the obtained signals with the recovery results of the three algorithms, In order to further explain the recovery effect of the source signal, the power spectrum analysis of the collected signal and the source signal is carried out. In both cases, the main frequency components of matrix cracking are 6~8kHz and 5kHz, respectively, and the main frequency components of matrix crack propagation are 40~60kHz and 100.20kHz, respectively. It is found that the recovery effect of improved RBPF is more representative by previous analysis. The main frequency components of matrix cracking and matrix crack propagation should be 5~9kHz and 1020kHz, respectively. The proposed signal recovery method based on improved RBPF algorithm not only effectively recovers the acoustic emission signals of refractories, but also provides a more accurate basis for the identification of damage patterns. It provides a new idea for the study of material damage.
【學位授予單位】:武漢科技大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:TQ175.1;TN713
【參考文獻】
相關期刊論文 前10條
1 葛貞笛;張爾卿;傅攀;;粒子濾波在機械密封端面接觸狀態(tài)聲發(fā)射監(jiān)測中的應用[J];潤滑與密封;2015年04期
2 郭福平;段志宏;孫志偉;;基于包絡譜分析的滾動軸承滾動體故障聲發(fā)射診斷研究[J];組合機床與自動化加工技術;2015年02期
3 趙堯杰;王志剛;劉昌明;孔建益;韓兵強;;基于小波能譜系數(shù)的耐火材料損傷分析[J];武漢科技大學學報;2013年01期
4 王國林;胡蛟;;小波分析在路面不平度信號降噪中的應用研究[J];機械設計與制造;2011年04期
5 杜剛;靳世久;付銅玲;王偉魁;李一博;;基于平均頻譜的儲油罐罐底腐蝕聲發(fā)射特征分析[J];納米技術與精密工程;2011年02期
6 莊澤森;張建秋;尹建君;;混合線性/非線性模型的準高斯Rao-Blackwellized粒子濾波法[J];航空學報;2008年02期
7 方正;佟國峰;徐心和;;粒子群優(yōu)化粒子濾波方法[J];控制與決策;2007年03期
8 袁澤劍,鄭南寧,賈新春;高斯-厄米特粒子濾波器[J];電子學報;2003年07期
9 易若翔,劉時風,耿榮生,沈功田;人工神經(jīng)網(wǎng)絡在聲發(fā)射檢測中的應用[J];無損檢測;2002年11期
10 張平,施克仁,耿榮生,沈功田;小波變換在聲發(fā)射檢測中的應用[J];無損檢測;2002年10期
,本文編號:1792252
本文鏈接:http://sikaile.net/kejilunwen/huagong/1792252.html