天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 化工論文 >

管式固體氧化物燃料電池跨尺度多物理場耦合數(shù)值分析優(yōu)化

發(fā)布時間:2018-04-23 14:55

  本文選題:固體氧化物燃料電池 + 數(shù)值模型; 參考:《江蘇大學(xué)》2017年博士論文


【摘要】:隨著全球經(jīng)濟(jì)總量的不斷提高,傳統(tǒng)的燃燒化石燃料提供動力的方式給環(huán)境造成了巨大的壓力,而固體氧化物燃料電池(SOFC)是一種可以避開燃燒過程、不受卡諾循環(huán)限制而直接把燃料內(nèi)的化學(xué)能轉(zhuǎn)化為電能的設(shè)備,具有高效率和低排放的優(yōu)勢,屬于與環(huán)境兼容的新能源技術(shù)。研究以管式SOFC為對象,在電池單元尺度層面上,建立了一個多物理場耦合模型來研究電池構(gòu)型對其性能的影響。模型中考慮了集流件與電極間的接觸電阻,耦合了電子導(dǎo)電過程、離了導(dǎo)電過程、氣體輸運過程以及電化學(xué)反應(yīng)過程。計算結(jié)果表明:通過適當(dāng)提高運行溫度和電極電導(dǎo)率,同時降低電極孔隙率、接觸電阻和輸出電壓有利于SOFC性能的提升;特別當(dāng)溫度較低、陰極電導(dǎo)率較小、陰極孔隙率較大、輸出電壓較低時,陰極支撐型管式SOFC性能優(yōu)于陽極支撐型管式SOFC,這也是傳統(tǒng)主流采用陰極支撐型設(shè)計的原因。然而,一方面,陰極支撐型實際應(yīng)用中會面臨一些限制其性能進(jìn)一步提升的不利因素,另一方面,陽極支撐型在濃差損失和燃料利用率等方面相對陰極支撐型占優(yōu),加之近年來SOFC出現(xiàn)了有利于陽極支撐的新集流件設(shè)計,都為陽極支撐型的發(fā)展帶來了可能。陽極支撐型設(shè)計需要合理的管道外側(cè)空氣分配方案與之配套,故在電池堆大尺度層面,區(qū)別于傳統(tǒng)的以陰極支撐型為主的電堆設(shè)計,針對陽極支撐型建立了電堆內(nèi)空氣流場模型。計算分析多種設(shè)計方案,綜合考慮各結(jié)構(gòu)參數(shù)對空氣流場影響,包括進(jìn)出口管直徑、進(jìn)出口管數(shù)、進(jìn)出口管布置位置、流通截面、單電池間距等,對多種方案的堆內(nèi)空氣流場各區(qū)域進(jìn)行整體分析和優(yōu)化設(shè)計,在此基礎(chǔ)上提出了一種陽極支撐型電堆的新型的空氣分配設(shè)計方案。新型空氣分配器特點如下:(1)沿SOFC單元管長度方向在空氣入口平均布置了3根管,從下側(cè)面輸送空氣。對應(yīng)的入口空氣流量分入3個歧管,歧管內(nèi)流速降為原來1/3,從而有利于提高SOFC單元間的空氣分配均勻性;(2)分配器頂部相對于底部,入口側(cè)相對于出口側(cè),均采用了截面縮窄的設(shè)計。通過增加流動路徑流動阻力的方式,降低分配器左側(cè)和頂部區(qū)域附近的空氣靜壓強(qiáng),避免過多的空氣通過分配器的左側(cè)和頂部繞過電池單元排列區(qū)未經(jīng)反應(yīng)直接流出,使更多的氣流受迫進(jìn)入電池單元區(qū)域,從而改善空氣在電池單元間的空氣分配質(zhì)量;(3)沿SOFC單元管長度方向在電堆右側(cè)空氣出口布置了兩排尾氣收集管,每排的3根管,從上到下管徑由小到大變化,具有阻力減小的特性,使得分配器右側(cè)的尾部收集區(qū)壓力從上到下壓力增加的問題得到緩解;(4)入口主管道系列歧管和出口尾氣收集系列歧管,兩者排列方向呈相互垂直特性,使空氣在電堆中的流動兼顧了縱向和橫向的均勻性,從而改善了空氣在電池單元間及SOFC單元表面的空氣分配質(zhì)量;(5)空氣分配器除入口處那個角,其余3個角用圓弧設(shè)計。圓弧設(shè)計減少了空氣流動在分配器直角處的局部壓力損失,使空氣從入口到出口流動更連續(xù),非電池排列區(qū)的空氣更多參與電池排列區(qū)的反應(yīng),提高了空氣利用率,減少了空氣泵入功;(6)通過調(diào)整分配器左窄右寬,上窄下寬,尾氣收集管徑大小比例,調(diào)整空氣路徑各段流動阻力,達(dá)到入口空氣各歧管的均勻輸入和出口尾氣各收集歧管均勻輸出。對電池堆的計算結(jié)果顯示,最終優(yōu)化方案相比目前的一進(jìn)一出空氣分配方案,各主截面內(nèi)速度標(biāo)準(zhǔn)偏差從4.0401降為0.9915,無量綱的質(zhì)量流量比從0.5以上占38.1%提升到0.5以上占87.2%,實現(xiàn)了電堆中空氣較均勻分配。與現(xiàn)有技術(shù)相比,此空氣分配器可為陽極支撐型管式電堆提供可靠的空氣分配質(zhì)量,解決了其實用化面臨的技術(shù)難題之一,為研發(fā)高性能管式SOFC電堆提供了重要的技術(shù)支持。
[Abstract]:With the increase of the global economy, the traditional way of burning fossil fuel to supply power has caused great pressure to the environment, and the solid oxide fuel cell (SOFC) is a kind of equipment which can avoid the combustion process and convert the chemical energy of the fuel into the electric energy directly without the restriction of the Kano cycle. The advantage of it is a new energy technology compatible with the environment. A multi physical field coupling model is established to study the effect of the battery configuration on its performance at the cell scale level. In the model, the contact resistance between the collector parts and the electrodes is considered, and the electrical conduction process is coupled with the electrical conduction process in the model. The results show that the contact resistance and the output voltage are beneficial to the improvement of SOFC performance by increasing the operating temperature and electrode conductivity and reducing the electrode porosity, especially when the temperature is low, the cathodic conductivity is smaller, the cathode porosity is larger, and the output voltage is low, the cathode support is low. The performance of the tube type SOFC is better than that of the anode supported tube type SOFC, which is also the reason for the traditional mainstream design of the cathodic support type. On the one hand, the practical application of the cathode support will face some unfavorable factors that limit its performance further. On the other hand, the anode support is relative to the concentration loss and fuel utilization ratio. The support type is dominant. In addition, in recent years, the design of new collection flow parts for anode support has appeared in SOFC. It is possible for the development of anodic support type. The design of anodic support needs a reasonable scheme of air distribution outside the pipe. So, in the large scale level of the battery stack, the area is different from the traditional cathodic support type. The air flow field model in the reactor is established for the anode support type. Various design schemes are calculated and analyzed. The influence of various structural parameters on the air flow field is considered, including the diameter of the inlet and outlet pipe, the number of import and export tube, the arrangement position of the inlet and outlet pipe, the flow section, the single battery space and so on, and the whole area of the air flow field in a variety of schemes is carried out as a whole On the basis of the analysis and optimization design, a new air distribution design scheme for anodic support type electric reactor is proposed. The characteristics of the new air distributor are as follows: (1) 3 pipes are arranged on the air inlet along the length direction of the SOFC unit tube and the air is transported from the lower side. The corresponding inlet air flow is divided into 3 manifold and the flow velocity inside the manifold. It is reduced to the original 1/3, which helps to improve the air distribution uniformity between the SOFC units; (2) the design of cross section narrowing is adopted at the top of the distributor relative to the bottom and the inlet side relative to the outlet side. By increasing the flow resistance of the flow path, the air static pressure near the left and top areas of the distributor is reduced to avoid excessive air. The air distribution quality between the cell units is improved by the direct flow of the cell permutation at the left and top of the distributor through the cell permutation, so that more air flow is forced into the cell area, and the air distribution quality between the cell units is improved. (3) a two row exhaust collection tube is arranged in the right air outlet of the SOFC unit tube, 3 pipes per row, The upper and lower pipe diameter changes from small to large and has the characteristic of decreasing resistance, which makes the problem of increasing pressure from upper to bottom in the right side of the distributor is relieved; (4) the series manifold of the main inlet pipe and the outlet tail gas collects a series of manifold, and the direction of the two arrangement is perpendicular to each other, so that the flow of air in the electric reactor is taken into account. The longitudinal and transverse uniformity improves air distribution quality on the surface of the cell and SOFC unit. (5) the air distributor is designed with a circular arc at the corner of the entrance and the other 3 angles. The arc design reduces the local pressure loss of air flow at the right angle of the distributor, making the air flow more continuous from the entrance to the exit. The air in the battery permutation area is more involved in the reaction of the battery permutation area, which improves the air utilization rate and reduces the power of the air pump. (6) by adjusting the width of the left narrow right, the width of the upper and narrow and the width, the tail gas collects the diameter ratio of the pipe, and adjusts the flow resistance of each section of the air path to achieve the uniform input of the inlet air manifold and the various collection disambiguation of the outlet tail gas. The calculation results of the battery stack show that the final optimization scheme has reduced the standard deviation from 4.0401 to 0.9915 in the main section of the main section compared with the current one out and out air distribution scheme, and the dimensionless mass flow rate is increased to more than 0.5 from 38.1% to more than 0.5, and the air distribution in the reactor is more evenly distributed. In comparison, the air distributor can provide reliable air distribution quality for anodic supported tubular electric reactor and solve one of the technical difficulties faced by the practical application. It provides important technical support for the research and development of high performance tubular SOFC electric reactor.

【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TM911.4

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 吳小芳;張文強(qiáng);于波;郭緒強(qiáng);徐景明;;固體氧化物燃料電池/電解池金屬連接體涂層研究進(jìn)展[J];稀有金屬材料與工程;2015年06期

2 陳昭鋒;陳曉峰;;國外新興產(chǎn)業(yè)資源配置政策路徑探討[J];中國科技資源導(dǎo)刊;2015年01期

3 程春英;尹學(xué)博;;霧霾之PM_(2.5)的來源、成分、形成及危害[J];大學(xué)化學(xué);2014年05期

4 李連和;齊水冰;李可;冼燦標(biāo);;固體氧化物燃料電池應(yīng)用現(xiàn)況及展望[J];廣東化工;2013年14期

5 蔣先鋒;;固體氧化物燃料電池的熱力學(xué)及電化學(xué)應(yīng)用基礎(chǔ)[J];化工時刊;2012年07期

6 彭珍珍;杜洪兵;陳廣樂;郭瑞松;;國外SOFC研究機(jī)構(gòu)及研發(fā)狀況[J];硅酸鹽學(xué)報;2010年03期

7 孔永紅;華斌;蒲健;;金屬支撐型固體氧化物燃料電池研究現(xiàn)狀與發(fā)展[J];中國科技論文在線;2009年04期

8 樸金花,孫克寧,張乃慶,周德瑞,華軍;固體氧化物燃料電池密封材料的研究進(jìn)展[J];人工晶體學(xué)報;2004年06期

9 趙輝,霍麗華,孫麗萍,高山,于麗君,趙經(jīng)貴;中溫固體氧化物燃料電池復(fù)合陰極材料LSM-CBO的制備及性能研究[J];化學(xué)學(xué)報;2004年20期

10 朱新堅;中國燃料電池技術(shù)現(xiàn)狀與展望[J];電池;2004年03期

相關(guān)博士學(xué)位論文 前6條

1 劉燕;便攜式錐管狀固體氧化物燃料電池的研究與開發(fā)[D];華南理工大學(xué);2013年

2 孔為;固體氧化物燃料電池和磁控濺射陰極的理論分析與優(yōu)化設(shè)計[D];中國科學(xué)技術(shù)大學(xué);2012年

3 丁巖芝;中溫固體氧化物燃料電池復(fù)合連接材料的制備與性能研究[D];中國科學(xué)技術(shù)大學(xué);2011年

4 陳代芬;固體氧化物燃料電池性能的微結(jié)構(gòu)理論與多尺度多物理場模擬[D];中國科學(xué)技術(shù)大學(xué);2010年

5 劉世學(xué);中溫固體氧化物燃料電池多物理場模擬與性能優(yōu)化[D];中國科學(xué)技術(shù)大學(xué);2008年

6 趙英汝;兩類典型能量轉(zhuǎn)換系統(tǒng)—燃料電池和內(nèi)燃機(jī)循環(huán)—的性能特性與優(yōu)化理論研究[D];廈門大學(xué);2008年

相關(guān)碩士學(xué)位論文 前1條

1 曾啟策;固體氧化物燃料電池模塊化短堆流場模擬與結(jié)構(gòu)優(yōu)化[D];江蘇科技大學(xué);2013年

,

本文編號:1792436

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huagong/1792436.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶e185d***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com