氧化亞銅光電極的制備、表面修飾和光電學(xué)性能研究
發(fā)布時(shí)間:2018-03-27 23:40
本文選題:光電化學(xué) 切入點(diǎn):氧化亞銅納米線 出處:《南昌大學(xué)》2015年碩士論文
【摘要】:確定并建立一個(gè)可持續(xù)的能源系統(tǒng)是當(dāng)今社會(huì)必須解決的關(guān)鍵問(wèn)題。而其中,尋找合適的新能源是當(dāng)下所需要面對(duì)的問(wèn)題。氫能由于具有豐富且廉價(jià)的原料,便于儲(chǔ)存和運(yùn)輸,對(duì)環(huán)境無(wú)污染等特點(diǎn)而被普遍認(rèn)為是最好的清潔能源。通過(guò)光電催化分解水的方法,利用免費(fèi)且無(wú)限的太陽(yáng)制氫被認(rèn)為是最具發(fā)展?jié)摿Φ闹茪浞椒āQ趸瘉嗐~是重要的p-型半導(dǎo)體氧化物,具有合適的禁帶寬度(2.0 eV)保證了有效的可見(jiàn)光吸收,以及-0.7eV的導(dǎo)帶位置(相對(duì)標(biāo)準(zhǔn)氫電極)使其能夠光解水制氫,并且銅作為氧化亞銅的來(lái)源,大量存在于地殼中,因此氧化亞銅被認(rèn)為是最有潛力的光解水制氫的光電極材料之一。然而氧化亞銅在光電化學(xué)分解水的應(yīng)用中有兩個(gè)主要的缺陷:載流子擴(kuò)散長(zhǎng)度較短且容易發(fā)生光腐蝕。現(xiàn)有的研究中,通過(guò)改變氧化亞銅的納米結(jié)構(gòu),在氧化亞銅表面修飾保護(hù)層以及助催化劑等方法很好的提高了氧化亞銅的光電化學(xué)活性和穩(wěn)定性。本文的工作內(nèi)容主要包括以下兩個(gè)方面:1利用陽(yáng)極氧化的方法,通過(guò)優(yōu)化條件,在10 mA/cm2電流密度下,制備了氫氧化銅納米線,再經(jīng)過(guò)550℃氮?dú)猸h(huán)境下高溫煅燒得到氧化亞銅納米線。為了提高氧化亞銅的穩(wěn)定性與光電化學(xué)活性,在氧化亞銅表面分別利用葡萄糖和醋酸鎳為前軀體,先后修飾了碳層(550℃,氮?dú)猸h(huán)境下煅燒)和氧化鎳層(200℃,空氣環(huán)境下煅燒)。通過(guò)電化學(xué)測(cè)試考察其光電化學(xué)活性,分析對(duì)比了不同葡萄糖濃度和醋酸鎳濃度對(duì)光電極的光電化學(xué)活性和穩(wěn)定性的影響。結(jié)果表明,當(dāng)葡萄糖濃度為3 mg/mL時(shí),修飾的碳層顯著提高了氧化亞銅光電極的光電化學(xué)活性和穩(wěn)定性;當(dāng)醋酸鎳濃度為0.2mg/m L時(shí),氧化鎳層修飾的光電極的光電化學(xué)活性和穩(wěn)定性進(jìn)一步提高;碳層和氧化鎳復(fù)合修飾時(shí),比碳層或鎳層單獨(dú)修飾時(shí)產(chǎn)生了更大的光電流,即產(chǎn)生協(xié)同效應(yīng)。2用電鍍的方法,在有機(jī)溶劑N-甲基甲酰胺中,以金屬鎳鹽為原料,將金屬鎳沉積在氧化亞銅光電極表面作為助催化劑。利用光電化學(xué)測(cè)試,探究了不同的沉積電流密度和沉積時(shí)間對(duì)光電極的光電性能的影響。發(fā)現(xiàn),在10 mA/cm2的電流密度下沉積10s時(shí),光電極的光電活性明顯提高,但穩(wěn)定性卻沒(méi)有提高。為此,對(duì)修飾了金屬鎳的光電極進(jìn)行了氧化后處理,在160℃下氧化了30min,在表面生成了氧化銅保護(hù)層和鎳/氧化鎳的核殼結(jié)構(gòu),進(jìn)一步提高了光電極的光電活性和穩(wěn)定性。
[Abstract]:Identifying and building a sustainable energy system is a key issue that must be addressed in today's society. Among them, finding suitable new sources of energy is an immediate problem. Hydrogen energy is easy to store and transport because of its rich and inexpensive raw materials, It is generally considered as the best clean energy because of its non-pollution and other characteristics. The method of photocatalytic decomposition of water, Free and unlimited solar hydrogen production is considered to be the most promising method for hydrogen production. Cuprous oxide is an important p-type semiconductor oxide with a suitable bandgap of 2.0 EV) to ensure effective visible light absorption. And the conduction band position of -0.7eV (relative to the standard hydrogen electrode) enables it to photodissociate water for hydrogen production, and copper, as a source of cuprous oxide, is abundant in the earth's crust. Therefore, cuprous oxide is considered to be one of the most promising photoelectrode materials for photodissociation of hydrogen from water. However, copper oxide has two main defects in the application of photochemical decomposition of water: short carrier diffusion length and easy occurrence. Photocorrosion. Existing research, By changing the nanostructure of cuprous oxide, The photochemical activity and stability of cuprous oxide are improved by modifying the protective layer and cocatalyst on the surface of cuprous oxide. Copper hydroxide nanowires were prepared at 10 mA/cm2 current density and calcined at 550 鈩,
本文編號(hào):1673810
本文鏈接:http://sikaile.net/kejilunwen/huagong/1673810.html
最近更新
教材專(zhuān)著