基于BP神經(jīng)網(wǎng)絡(luò)的場道脫空檢測方法及實(shí)驗(yàn)
發(fā)布時(shí)間:2019-02-08 17:08
【摘要】:為研究場道脫空檢測方法,進(jìn)行室內(nèi)模型試驗(yàn),獲得沖擊荷載作用下道面板加速度響應(yīng)時(shí)程曲線,利用Matlab小波變換工具箱提取加速度曲線特征值,分析脫空對振動信號的影響規(guī)律.通過優(yōu)化荷載級數(shù)、篩選輸入向量,建立了場道脫空的BP(back propagation)神經(jīng)網(wǎng)絡(luò)預(yù)測方法.為檢驗(yàn)理論研究結(jié)果的正確性,利用重錘式彎沉儀在機(jī)場進(jìn)行跑道脫空測試,通過場道取芯脫空觀察評價(jià)BP神經(jīng)網(wǎng)絡(luò)預(yù)測結(jié)論的可靠性.結(jié)果表明,荷載級數(shù)、輸入向量、訓(xùn)練次數(shù)、訓(xùn)練強(qiáng)度和算法對BP神經(jīng)網(wǎng)絡(luò)預(yù)測準(zhǔn)確性影響較大;脫空影響下場道加速度信號可作為BP神經(jīng)網(wǎng)絡(luò)脫空預(yù)測的輸入向量,取芯后場道脫空狀況同BP神經(jīng)網(wǎng)絡(luò)預(yù)測結(jié)果一致.
[Abstract]:In order to study the detection method of field channel void, the time-history curve of acceleration response of track panel under impact load was obtained by indoor model test. The eigenvalue of acceleration curve was extracted by Matlab wavelet transform toolbox. The influence of void on vibration signal is analyzed. By optimizing load series and selecting input vectors, a prediction method of field channel void based on BP (back propagation) neural network is established. In order to verify the correctness of the theoretical research results, the reliability of the prediction results of BP neural network was evaluated by using the heavy-weight deflectometer to test the runway clearance at the airport. The results show that load series, input vector, training times, training intensity and algorithm have great influence on the prediction accuracy of BP neural network. The acceleration signal of field track can be used as input vector of BP neural network to predict void under the influence of void. The condition of field track void in core is consistent with the prediction result of BP neural network.
【作者單位】: 凍土工程國家重點(diǎn)實(shí)驗(yàn)室;中國民航大學(xué)機(jī)場學(xué)院;
【基金】:國家自然基金資助項(xiàng)目(51178456) 凍土工程國家重點(diǎn)實(shí)驗(yàn)室開放基金資助項(xiàng)目(SKLFSE201409) 中央高;緲I(yè)務(wù)費(fèi)資助項(xiàng)目(3122016D019)~~
【分類號】:V351;TP183
[Abstract]:In order to study the detection method of field channel void, the time-history curve of acceleration response of track panel under impact load was obtained by indoor model test. The eigenvalue of acceleration curve was extracted by Matlab wavelet transform toolbox. The influence of void on vibration signal is analyzed. By optimizing load series and selecting input vectors, a prediction method of field channel void based on BP (back propagation) neural network is established. In order to verify the correctness of the theoretical research results, the reliability of the prediction results of BP neural network was evaluated by using the heavy-weight deflectometer to test the runway clearance at the airport. The results show that load series, input vector, training times, training intensity and algorithm have great influence on the prediction accuracy of BP neural network. The acceleration signal of field track can be used as input vector of BP neural network to predict void under the influence of void. The condition of field track void in core is consistent with the prediction result of BP neural network.
【作者單位】: 凍土工程國家重點(diǎn)實(shí)驗(yàn)室;中國民航大學(xué)機(jī)場學(xué)院;
【基金】:國家自然基金資助項(xiàng)目(51178456) 凍土工程國家重點(diǎn)實(shí)驗(yàn)室開放基金資助項(xiàng)目(SKLFSE201409) 中央高;緲I(yè)務(wù)費(fèi)資助項(xiàng)目(3122016D019)~~
【分類號】:V351;TP183
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王雪紅;劉曉青;陶海龍;錢文江;趙泱軍;;優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的位移預(yù)測模型[J];水利水運(yùn)工程學(xué)報(bào);2014年02期
2 丁鴿;花向紅;田茂;蔣健君;;改進(jìn)的小波神經(jīng)網(wǎng)絡(luò)在沉降預(yù)測中的應(yīng)用[J];測繪地理信息;2013年06期
3 于偉;蔡t熺,
本文編號:2418595
本文鏈接:http://sikaile.net/kejilunwen/hangkongsky/2418595.html
最近更新
教材專著