基于摩擦力補(bǔ)償?shù)母蓴_觀測器在航空光電穩(wěn)定平臺的應(yīng)用
[Abstract]:The aeronautical photoelectric stabilization platform is widely used in reconnaissance and target positioning. It has the function of isolating carrier disturbance and maintaining the stability of the axis of view. The higher the accuracy of visual axis stabilization, the more accurate the platform is to obtain target information. Among the many disturbance factors on the platform, the friction moment between shafting has an obvious effect on the stability accuracy of the visual axis. To solve this problem, the control strategy combining friction compensation and disturbance observer is applied to the platform control system. The main contents of this paper are as follows: (1) the model of the platform velocity loop is established, which lays the foundation for the design of the subsequent disturbance suppression strategy. According to the dynamic equation of DC torque motor and the relation between motor and load, the controlled model of the system is established. Combined with the disturbance in the system, the system model with disturbance is established by "equivalent voltage". (2) LuGre model is used to model the friction moment in the platform. The friction parameters of the platform are identified by two-step parameter identification method. In the first step, the Stribeck curve of the platform is obtained by experiments, and the static parameters of the LuGre model are obtained by the method of data fitting. In the second step, the range of dynamic parameters of LuGre model is obtained by simplifying the friction model at low speed, and then the value of dynamic parameter is obtained by genetic algorithm. The friction compensation model of platform is obtained on the basis of parameter identification, and the validity of the model is verified by experiments. (3) on the basis of friction compensation, disturbance observer is designed for residual disturbance. Firstly, the design steps of disturbance observer are introduced in detail. Then, the improved disturbance observer is combined with friction compensation. Simulation experiments are designed to verify the control scheme. (4) the friction compensation and disturbance observer are applied to the optoelectronic stabilization platform for experimental verification. It is proved that the low speed crawling phenomenon caused by friction is obviously weakened after adopting this control scheme. The platform is installed on the flight simulator to test the ability of the control scheme to suppress the disturbance within the frequency of 3.0Hz. The experimental results show that the disturbance isolation degree of the velocity loop of the platform is increased at least 14.52 dB, and the optimal condition has reached 20.98 dB. Moreover, the control scheme has strong robustness and allows the parameters of the controlled object to float in the range of 鹵10%, so it has high application value.
【學(xué)位授予單位】:中國科學(xué)院長春光學(xué)精密機(jī)械與物理研究所
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:V243
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙陽陽;閆鴻魁;王森;楊秀敏;郭嘉成;;基于混沌遺傳算法的永磁無刷電機(jī)優(yōu)化設(shè)計(jì)研究[J];沈陽工程學(xué)院學(xué)報(bào)(自然科學(xué)版);2016年03期
2 張?jiān)?劉睿;;軍用大型無人機(jī)的發(fā)展現(xiàn)狀及趨勢[J];電子世界;2016年11期
3 薛春祥;黃孝鵬;朱咸軍;蔣瑩瑩;;外軍無人系統(tǒng)現(xiàn)狀與發(fā)展趨勢[J];雷達(dá)與對抗;2016年01期
4 夏濤;;基于內(nèi)模原理的狀態(tài)反饋控制在陀螺平臺視軸穩(wěn)定系統(tǒng)中的應(yīng)用[J];河南科技;2015年08期
5 汪永陽;戴明;丁策;王國華;黃猛;;光電穩(wěn)定平臺中高階擾動觀測器的應(yīng)用[J];光學(xué)精密工程;2015年02期
6 王建敏;吳云潔;董小萌;;基于滑模干擾觀測器的高超聲速飛行器滑?刂芠J];航空學(xué)報(bào);2015年06期
7 靳興來;朱世強(qiáng);吳文祥;;基于GMS摩擦模型的機(jī)器人低速運(yùn)動研究[J];傳感器與微系統(tǒng);2014年01期
8 楊維新;唐伶俐;汪超亮;李子揚(yáng);;基于遺傳小波神經(jīng)網(wǎng)絡(luò)的光電穩(wěn)定平臺系統(tǒng)辨識[J];儀器儀表學(xué)報(bào);2013年03期
9 沈宏海;黃猛;李嘉全;劉晶紅;戴明;賈平;;國外先進(jìn)航空光電載荷的進(jìn)展與關(guān)鍵技術(shù)分析[J];中國光學(xué);2012年01期
10 尹正男;蘇劍波;高秀行;;保證閉環(huán)系統(tǒng)魯棒穩(wěn)定性的干擾觀測器系統(tǒng)性設(shè)計(jì)方法[J];自動化學(xué)報(bào);2012年01期
相關(guān)博士學(xué)位論文 前10條
1 汪永陽;基于快速反射鏡的高精度視軸穩(wěn)定技術(shù)研究[D];中國科學(xué)院研究生院(長春光學(xué)精密機(jī)械與物理研究所);2016年
2 鄧科;慣性穩(wěn)定平臺的建模分析與高精度控制[D];中國科學(xué)技術(shù)大學(xué);2016年
3 魏偉;高精度機(jī)載光電平臺視軸穩(wěn)定技術(shù)研究[D];中國科學(xué)院研究生院(長春光學(xué)精密機(jī)械與物理研究所);2015年
4 李昕陽;基于干擾觀測器的航空相機(jī)俯角控制系統(tǒng)的研究[D];中國科學(xué)院研究生院(長春光學(xué)精密機(jī)械與物理研究所);2014年
5 李賢濤;航空光電穩(wěn)定平臺擾動抑制技術(shù)的研究[D];中國科學(xué)院研究生院(長春光學(xué)精密機(jī)械與物理研究所);2014年
6 黎志強(qiáng);精密光電穩(wěn)定平臺參數(shù)辨識與摩擦補(bǔ)償控制問題研究[D];國防科學(xué)技術(shù)大學(xué);2013年
7 付金寶;干擾觀測器和先進(jìn)控制在航空相機(jī)位角系統(tǒng)中的應(yīng)用研究[D];中國科學(xué)院研究生院(長春光學(xué)精密機(jī)械與物理研究所);2013年
8 尹正男;具有魯棒性的最優(yōu)干擾觀測器的系統(tǒng)性設(shè)計(jì)及其應(yīng)用[D];上海交通大學(xué);2012年
9 鄭耿峰;動態(tài)目標(biāo)仿真轉(zhuǎn)臺控制及摩擦補(bǔ)償研究[D];中國科學(xué)院研究生院(長春光學(xué)精密機(jī)械與物理研究所);2011年
10 許德新;無人機(jī)光電載荷視軸穩(wěn)定技術(shù)研究[D];哈爾濱工程大學(xué);2011年
相關(guān)碩士學(xué)位論文 前3條
1 李博;高精度伺服系統(tǒng)的摩擦力建模及補(bǔ)償[D];哈爾濱工業(yè)大學(xué);2008年
2 王喜明;基于LuGre模型的摩擦力矩補(bǔ)償研究[D];中國科學(xué)院研究生院(西安光學(xué)精密機(jī)械研究所);2007年
3 劉向;線加速度計(jì)在平臺穩(wěn)定系統(tǒng)中應(yīng)用的理論研究[D];中國科學(xué)院研究生院(長春光學(xué)精密機(jī)械與物理研究所);2004年
,本文編號:2406018
本文鏈接:http://sikaile.net/kejilunwen/hangkongsky/2406018.html