天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 航空航天論文 >

翼盤式太陽能飛行器的研究與設(shè)計(jì)

發(fā)布時(shí)間:2018-12-29 16:04
【摘要】:太陽能飛行器是一類將太陽能作為主要?jiǎng)恿υ?可實(shí)現(xiàn)大高度、長航距、長航時(shí)的新型飛行器,在理想情況下,太陽能飛行器可以在臨近空間實(shí)現(xiàn)跨晝夜,遠(yuǎn)期可望實(shí)現(xiàn)連續(xù)跨年環(huán)球飛行,如此誘人的前景,加之光伏發(fā)電技術(shù)和飛行器技術(shù)的不斷發(fā)展,催生了對(duì)太陽能飛行器持續(xù)研究的熱潮。典型太陽能飛行器仍然采用傳統(tǒng)飛行器的十字形布局,只不過是將傳統(tǒng)飛行器的動(dòng)力源替換為光伏薄膜電池。然而,由于光伏技術(shù)發(fā)展滯后,光伏電池效率低下,單純將傳統(tǒng)飛行器的動(dòng)力源置換為太陽能并不能解決問題。為此,人們?cè)O(shè)計(jì)了一系列大展弦比、輕質(zhì)、大表面積飛行器,一是借助機(jī)翼的大展弦比結(jié)構(gòu),彌補(bǔ)動(dòng)力不足的問題;二是使用大表面積的薄膜電池來提供充足的升力。然而,與此同時(shí)帶來了另外一個(gè)難題:大展弦比結(jié)構(gòu)帶來的剛度弱化問題;谝陨媳尘,提出一種新型翼盤式太陽能飛行器——即同時(shí)考慮飛行器的氣動(dòng)效率和光伏薄膜電池的鋪設(shè)面積,將盤型升力體和固定機(jī)翼結(jié)合起來,飛行方式參考直升飛機(jī)。該新型飛行器能夠?qū)崿F(xiàn)懸空、垂直短距起降等功能,同時(shí),由于基本克服了能量來源的制約,從而可實(shí)現(xiàn)大高度、長航距、超長巡航時(shí)間等飛行功能。首先,針對(duì)提出的新型飛行器布局,對(duì)飛行器的基本結(jié)構(gòu)進(jìn)行設(shè)計(jì),包括動(dòng)力系統(tǒng)分散和驅(qū)動(dòng)末端化設(shè)計(jì)、盤型機(jī)體組件、旋轉(zhuǎn)機(jī)翼、副翼系統(tǒng)等部件;然后,結(jié)合設(shè)計(jì)的飛行器結(jié)構(gòu),針對(duì)不同的飛行姿態(tài),對(duì)飛行器的飛行模式進(jìn)行規(guī)劃——即通過周期性的調(diào)節(jié)飛行器機(jī)翼末端的動(dòng)力螺旋槳和副翼系統(tǒng)來實(shí)現(xiàn)飛行器的各種飛行姿態(tài),具體包括飛行器的懸停、巡航以及爬升/下滑等典型飛行狀態(tài)。其次,根據(jù)前面規(guī)劃的飛行姿態(tài),結(jié)合飛行器的各項(xiàng)設(shè)計(jì)指標(biāo),利用動(dòng)量—葉素理論對(duì)飛行器的機(jī)翼氣動(dòng)力進(jìn)行理論分析,以得到飛行器機(jī)翼升阻力和下洗速度等。然后,基于AWB分析軟件,對(duì)飛行器的機(jī)體和機(jī)翼進(jìn)行氣動(dòng)分析,接著利用單向流固耦合理論,將模擬得到的氣動(dòng)載荷分別加載至機(jī)體組件和機(jī)翼組件,分析各主要部件的受載情況,并將分析結(jié)果作為進(jìn)一步結(jié)構(gòu)優(yōu)化的參考。最后,針對(duì)光伏發(fā)電系統(tǒng)中光伏電池的動(dòng)態(tài)特性進(jìn)行研究,建立了光伏電池的數(shù)學(xué)模型,并對(duì)影響光伏電池輸出效率的兩大因素——光照強(qiáng)度和環(huán)境溫度進(jìn)行仿真模擬;根據(jù)仿真結(jié)果可知,光伏電池并非線性輸出,因而需要將電池的輸出穩(wěn)定到一個(gè)額定電壓,為此,利用擾動(dòng)觀測(cè)法、增量電導(dǎo)法等追蹤策略實(shí)現(xiàn)光伏電池峰值的輸出。接著,根據(jù)我國不同地域和時(shí)節(jié)的光照情況,對(duì)飛行器能源系統(tǒng)的工作模式進(jìn)行規(guī)劃,保證飛行器可以實(shí)現(xiàn)持續(xù)跨晝夜飛行,此外,根據(jù)飛行器的不同飛行模式,制定了飛行器的能源供應(yīng)策略。
[Abstract]:Solar vehicle is a kind of new type of aircraft which takes solar energy as the main power source and can achieve high altitude, long distance and long voyage. Ideally, solar vehicles can span day and night in the near space. It is expected to realize continuous transannual flights around the world in the long run. This attractive prospect, coupled with the continuous development of photovoltaic power generation technology and aircraft technology, has given birth to a wave of continuous research on solar vehicles. The typical solar vehicle still adopts the cross-shaped layout of the traditional aircraft, which is only to replace the power source of the traditional vehicle with the photovoltaic thin-film cell. However, because of the lag of photovoltaic technology and the low efficiency of photovoltaic cells, simply replacing the power source of traditional aircraft with solar energy can not solve the problem. For this reason, a series of aircraft with large aspect ratio, light weight and large surface area have been designed, one is to make up for the problem of insufficient power with the aid of the large aspect ratio structure of the wing, and the other is to use thin film batteries with large surface area to provide sufficient lift. However, at the same time, it brings another problem: stiffness weakening caused by large aspect ratio structure. Based on the above background, a new type of wing disk solar vehicle is proposed, that is, the aerodynamic efficiency of the aircraft and the lay area of the photovoltaic thin film cell are considered at the same time, the disk lift body is combined with the fixed wing, and the flight mode is referred to the helicopter. The new aircraft can achieve the functions of suspension, vertical short-range take-off and landing, etc. At the same time, because of overcoming the restriction of energy source basically, it can realize the flight functions such as large altitude, long distance and long cruise time. First of all, the basic structure of the aircraft is designed for the proposed new aircraft layout, including the power system dispersion and drive terminal design, disk airframe components, rotating wing, aileron system and other components; Then, combined with the design of the structure of the aircraft, for different flight attitude, To plan the flight mode of the aircraft, that is, to realize the flight attitude of the aircraft by periodically adjusting the power propeller and the aileron system at the end of the wing of the aircraft, including the hovering of the aircraft. Typical flight conditions such as cruising and climbing / sliding. Secondly, according to the planned flight attitude, combined with the various design indexes of the aircraft, the aerodynamic force of the aircraft wing is theoretically analyzed by using the momentum-leaf element theory, so as to obtain the lift resistance and the downwash velocity of the aircraft wing. Then, based on the AWB analysis software, the aerodynamic analysis of the airframe and wing of the aircraft is carried out, and then the simulated aerodynamic loads are loaded into the airframe and wing components respectively by using the unidirectional fluid-solid coupling theory. The load of the main components is analyzed, and the results are used as the reference for further structural optimization. Finally, the dynamic characteristics of photovoltaic cells in photovoltaic power system are studied, the mathematical model of photovoltaic cells is established, and the two factors that affect the output efficiency of photovoltaic cells, namely, light intensity and ambient temperature, are simulated. According to the simulation results, the photovoltaic cell is not nonlinear output, so it is necessary to stabilize the cell output to a rated voltage. For this reason, the peak output of photovoltaic cell is achieved by using perturbation observation method, incremental conductance method and other tracking strategies. Then, according to the illumination situation of different regions and seasons in our country, the working mode of the energy system of the aircraft is planned to ensure that the aircraft can fly continuously day and night, in addition, according to the different flight mode of the aircraft, An energy supply strategy for the aircraft has been developed.
【學(xué)位授予單位】:蘭州交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:V272

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 ;⑻;趙志剛;張純杰;李曉黔;;光伏發(fā)電系統(tǒng)效率優(yōu)化控制仿真[J];計(jì)算機(jī)仿真;2015年08期

2 郭嘉琪;鄭興濤;董安琪;;太陽能混合動(dòng)力氣囊機(jī)身驗(yàn)證機(jī)[J];科技資訊;2014年15期

3 魏岳江;;太陽能無人機(jī)及其軍事應(yīng)用[J];國防科技;2012年06期

4 張芳;徐含樂;任武;;特種太陽能飛機(jī)總體參數(shù)設(shè)計(jì)方法研究[J];科學(xué)技術(shù)與工程;2012年24期

5 楊永恒;周克亮;;光伏電池建模及MPPT控制策略[J];電工技術(shù)學(xué)報(bào);2011年S1期

6 凌好;劉榮忠;郭銳;王宇波;;基于ARM7的太陽自動(dòng)跟蹤簡易控制系統(tǒng)設(shè)計(jì)[J];計(jì)算機(jī)測(cè)量與控制;2011年08期

7 ;Optimization design study of low-Reynolds-number high-lift airfoils for the high-efficiency propeller of low-dynamic vehicles in stratosphere[J];Science China(Technological Sciences);2010年10期

8 于軍力;王林林;高歌;;碟形升力體飛行器氣動(dòng)特性[J];北京航空航天大學(xué)學(xué)報(bào);2010年02期

9 崔爾杰;;近空間飛行器研究發(fā)展現(xiàn)狀及關(guān)鍵技術(shù)問題[J];力學(xué)進(jìn)展;2009年06期

10 鄧陽平;高正紅;詹浩;黃江濤;;橢圓翼型高速氣動(dòng)特性實(shí)驗(yàn)研究[J];航空計(jì)算技術(shù);2009年06期

,

本文編號(hào):2395037

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/hangkongsky/2395037.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶809b8***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com