應(yīng)用控制力矩陀螺的衛(wèi)星姿態(tài)控制研究
[Abstract]:With the wide application of high precision optical remote sensing to the earth and observation satellites in scientific research, commerce and military, the structure of satellites becomes more and more complex. The traditional angular momentum exchange actuators (such as flywheels) and jet thrusters which can not accurately output the continuous torque are difficult to meet the above requirements. The vibration problem of flexible accessories and the influence caused by the rotation of the accessories must be paid enough attention to. Single frame control moment gyroscope is an ideal actuator for satellite because of its simple and reliable physical structure and great torque amplification ability. However, its inherent singularity has a certain influence on its application. Therefore, the satellite attitude control problem of control moment gyroscope is studied in this paper. The main contents are as follows: firstly, the basic principle of single control moment gyroscope is introduced in detail. The common configuration of control moment gyroscope is briefly analyzed, and the control moment gyroscope with pyramid configuration is determined as the basis of the control law design in the next chapter. The control moment gyroscope with five pyramid configuration is characterized by its good configuration. As the best configuration for engineering applications. The principle and classification of singularity of control moment gyroscope (CMG) are described. The definitions of each coordinate system for satellite attitude description are given and the quaternion is taken as the satellite attitude description parameter in this paper and simplified. The kinematics model of flexible satellite attitude based on control moment gyroscope (CMG) as actuator is established. Combined quaternion kinematics model and flexible attitude dynamics constitute the flexible satellite attitude motion model in this paper. Secondly, based on the optimal idea, a new general control law form is obtained, which can be derived from a variety of practical control laws, according to the different dynamic effects of different initial frame angles on the control moment gyroscope in the control torque gyroscope. A method to obtain the initial optimal frame angle is designed to ensure that the control moment gyroscope can be kept away from singularity as far as possible. A new control law, feedback singular avoidance control law, is designed, which plays a certain role in avoiding singularity. A dual hybrid control law is proposed, which can accurately output torque when the control torque gyroscope is far from singularity, and can make the control moment gyroscope escape singularity, which brings great convenience to the mixed application of different control laws in practical engineering. Finally, when the flexible satellite is in orbit, it is affected by the unmodeled dynamics, the uncertainty of the model parameters and the external disturbance moment. A sliding mode variable structure control algorithm with nonlinear disturbance observer and a backstepping control algorithm with nonlinear disturbance observer are designed. The two control algorithms have the advantages of high maneuvering speed, simple structure, clear physical meaning and easy adjustment of parameters. In the environment of Matlab/Simulink, the two control algorithms are simulated in a unified background. The simulation results show that the algorithm is effective and reliable.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:V448.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐衍亮,劉剛,房建成;控制力矩陀螺用高性能永磁無刷直流電機(jī)研究[J];中國慣性技術(shù)學(xué)報(bào);2003年01期
2 張鵬波;張慶榮;房建成;;高速磁懸浮轉(zhuǎn)子穩(wěn)定性研究及其在控制力矩陀螺中應(yīng)用[J];中國慣性技術(shù)學(xué)報(bào);2006年03期
3 韓邦成;虎剛;房建成;;磁懸浮控制力矩陀螺高速轉(zhuǎn)子的優(yōu)化設(shè)計(jì)[J];光學(xué)精密工程;2006年04期
4 吳忠;魏孔明;;基于非線性觀測器的控制力矩陀螺操縱律設(shè)計(jì)[J];北京航空航天大學(xué)學(xué)報(bào);2006年11期
5 張激揚(yáng);周大寧;高亞楠;;控制力矩陀螺框架控制方法及框架轉(zhuǎn)速測量方法[J];空間控制技術(shù)與應(yīng)用;2008年02期
6 盧松濤王;磊趙育善;;雙框架控制力矩陀螺奇異性分析[J];北京航空航天大學(xué)學(xué)報(bào);2008年09期
7 王磊;趙育善;;雙框架控制力矩陀螺奇異分析及可視化[J];宇航學(xué)報(bào);2009年02期
8 王磊;趙育善;李云;;平行構(gòu)型雙框架控制力矩陀螺操縱律研究[J];宇航學(xué)報(bào);2009年04期
9 鄧瑞清;虎剛;王全武;;飛輪和控制力矩陀螺高速轉(zhuǎn)子軸向干擾特性的研究[J];航天控制;2009年04期
10 李海濤;房建成;韓邦成;魏彤;;一種雙框架磁懸浮控制力矩陀螺框架伺服系統(tǒng)擾動抑制方法研究[J];宇航學(xué)報(bào);2009年06期
相關(guān)會議論文 前6條
1 吳忠;段洪棟;王朋;;控制力矩陀螺框架伺服系統(tǒng)自適應(yīng)控制[A];2007'儀表,自動化及先進(jìn)集成技術(shù)大會論文集(一)[C];2007年
2 張景瑞;羅楊;劉偉;;單框架控制力矩陀螺群混合操縱律設(shè)計(jì)[A];第六屆全國動力學(xué)與控制青年學(xué)者學(xué)術(shù)研討會論文摘要集[C];2012年
3 陳茂勝;金光;;自抗擾控制力矩陀螺框架角位置伺服系統(tǒng)設(shè)計(jì)[A];中國空間科學(xué)學(xué)會2013年空間光學(xué)與機(jī)電技術(shù)研討會會議論文集[C];2013年
4 湯亮;陳義慶;;單框架控制力矩陀螺奇異問題研究[A];全國第十二屆空間及運(yùn)動體控制技術(shù)學(xué)術(shù)會議論文集[C];2006年
5 趙友選;趙麗濱;房建成;;磁懸浮控制力矩陀螺框架結(jié)構(gòu)分析及優(yōu)化[A];北京力學(xué)學(xué)會第12屆學(xué)術(shù)年會論文摘要集[C];2006年
6 韓邦成;虎剛;房建成;;諧波對磁懸浮轉(zhuǎn)子運(yùn)動軌跡的影響分析及仿真[A];中國系統(tǒng)仿真學(xué)會第五次全國會員代表大會暨2006年全國學(xué)術(shù)年會論文集[C];2006年
相關(guān)重要報(bào)紙文章 前4條
1 本報(bào)記者 陳瑜;“萬里穿針”是怎么成功的[N];科技日報(bào);2011年
2 景鵬;讓8.5噸的天宮一號平穩(wěn)飛行[N];中國航天報(bào);2011年
3 本報(bào)記者 楊晨光邋通訊員 賈愛平 鄧怡;讓中國的飛輪旋轉(zhuǎn)在世界前沿[N];中國教育報(bào);2008年
4 趙永新;像飛輪一樣運(yùn)轉(zhuǎn)[N];人民日報(bào);2008年
相關(guān)碩士學(xué)位論文 前10條
1 馮健;磁懸浮控制力矩陀螺高速轉(zhuǎn)子驅(qū)動控制系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[D];國防科學(xué)技術(shù)大學(xué);2013年
2 朱津津;應(yīng)用控制力矩陀螺的衛(wèi)星姿態(tài)控制研究[D];哈爾濱工業(yè)大學(xué);2016年
3 職光伸;控制力矩陀螺群的操縱律研究[D];哈爾濱工業(yè)大學(xué);2016年
4 黃體筍;磁懸浮控制力矩陀螺框架伺服電路研究與設(shè)計(jì)[D];沈陽工業(yè)大學(xué);2009年
5 舒盛榮;應(yīng)用有限元法的小型控制力矩陀螺結(jié)構(gòu)可靠性分析[D];哈爾濱工業(yè)大學(xué);2009年
6 張佳為;控制力矩陀螺系統(tǒng)伺服控制研究[D];哈爾濱工業(yè)大學(xué);2010年
7 楊海焱;一類控制力矩陀螺框架系統(tǒng)的控制方法及實(shí)驗(yàn)研究[D];南京理工大學(xué);2014年
8 張海;控制力矩陀螺控制電路研究與設(shè)計(jì)[D];沈陽工業(yè)大學(xué);2008年
9 程國棟;應(yīng)用控制力矩陀螺的敏捷衛(wèi)星姿態(tài)機(jī)動控制研究[D];哈爾濱工業(yè)大學(xué);2014年
10 劉付成;控制力矩陀螺在衛(wèi)星控制系統(tǒng)中的應(yīng)用[D];國防科學(xué)技術(shù)大學(xué);2004年
,本文編號:2352193
本文鏈接:http://sikaile.net/kejilunwen/hangkongsky/2352193.html