ZTC4鈦合金銑削工藝及其結(jié)構(gòu)件加工變形研究
[Abstract]:In order to meet the requirements of modern aerospace products such as high strength, high heat resistance and compact structure, cast titanium alloy integral structural parts are more and more widely used in this kind of products. However, this kind of part is easy to produce the phenomenon of turning tool in the process of machining, the difficult machinability of titanium alloy will speed up the wear of the tool, and the removal of material will cause the stress distribution of the structural part to redistribute, all these factors will lead to the larger machining deformation of the structural part. In this paper, the effects of annealing and stress redistribution, cutting load and tool wear on the machining deformation of ZTC4 cast titanium alloy monolithic structure are studied by means of the combination of experiment and finite element simulation. The deformation control strategy is also proposed. The main work accomplished is as follows: 1. The influence of cutting parameters on cutting force and cutting temperature was studied by single factor experiment, and the empirical formula was established. The relationship between tool wear and cutting speed, feed per tooth and cutting width is studied by orthogonal test. It is pointed out that the influence of feed per tooth on tool surface wear is the most obvious in the range of research parameters. An empirical formula for the amount of wear on the rear tool surface and the cutting parameters and time is established. 2. The annealing heat treatment process of disk parts was studied by means of finite element simulation and experiment, and the finite element simulation model of ZTC4 titanium alloy annealing heat treatment was established. Based on this model, the annealing heat treatment process of structural parts is studied and the initial stress field is established. Based on finite element simulation, the effects of annealing and stress release, cutting load and tool wear on machining deformation are studied, and the predicted deformation values of structural parts are obtained by coupling the above factors. The accuracy of the finite element model is verified by measuring the final deformation of the actual machined structural parts by using the CMM and comparing the simulation results with the simulation results. The genetic algorithm is used to optimize the machining parameters, and a tool compensation method is proposed to reduce the machining deformation. The finite element simulation shows that the optimized parameters and the compensated path can control the deformation.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:V261.23
【相似文獻(xiàn)】
相關(guān)期刊論文 前8條
1 邢棟梁;張建華;沈?qū)W會;趙云峰;;微細(xì)銑削鋁合金表面粗糙度的實(shí)驗(yàn)研究[J];制造技術(shù)與機(jī)床;2011年03期
2 束學(xué)勇;錢志良;;某型鈦合金航空零件表面粗糙度的切削實(shí)驗(yàn)研究[J];蘇州大學(xué)學(xué)報(bào)(工科版);2012年01期
3 丁建生;李登萬;韓建峰;劉義;王建錄;;切削參數(shù)對超臨界材料表面組織特性影響研究[J];現(xiàn)代制造工程;2010年12期
4 任軍學(xué);石凱;姚倡鋒;楊振朝;張定華;;TC11鈦合金插銑參數(shù)對表面溫度影響研究[J];機(jī)械科學(xué)與技術(shù);2009年10期
5 任軍學(xué);劉博;姚倡鋒;石凱;梁永收;羅遠(yuǎn)鋒;;TC11鈦合金插銑工藝切削參數(shù)選擇方法研究[J];機(jī)械科學(xué)與技術(shù);2010年05期
6 ;獨(dú)特的高精度徑向側(cè)銑[J];航空制造技術(shù);2010年02期
7 孫雅洲;孟慶鑫;韓麗麗;劉海濤;;微細(xì)銑削應(yīng)力場和溫度場的有限元模擬[J];現(xiàn)代制造工程;2008年12期
8 ;[J];;年期
相關(guān)博士學(xué)位論文 前1條
1 趙巖;微細(xì)銑削工藝基礎(chǔ)與實(shí)驗(yàn)研究[D];哈爾濱工業(yè)大學(xué);2008年
相關(guān)碩士學(xué)位論文 前6條
1 李鎮(zhèn);復(fù)雜薄壁支架零件精密加工工藝研究[D];南京理工大學(xué);2015年
2 張洪山;高效銑削鈦合金TC25加工性能研究[D];山東大學(xué);2015年
3 劉婷;微銑削切削力特性及加工質(zhì)量研究[D];天津大學(xué);2014年
4 黃宇峰;ZTC4鈦合金銑削工藝及其結(jié)構(gòu)件加工變形研究[D];南京航空航天大學(xué);2015年
5 靳賽;微細(xì)銑削表面質(zhì)量及毛刺形成的實(shí)驗(yàn)研究[D];山東大學(xué);2013年
6 譚亞明;基于微小型銑床的微細(xì)銑削加工試驗(yàn)研究[D];哈爾濱工業(yè)大學(xué);2006年
,本文編號:2292394
本文鏈接:http://sikaile.net/kejilunwen/hangkongsky/2292394.html