夾心式壓電驅(qū)動(dòng)履帶行駛系統(tǒng)的研究
[Abstract]:In the second and third lunar exploration projects in China, lunar rover (lunar rover) is an indispensable basic tool and necessary means to achieve scientific goals. Among the existing three basic forms of the wheel type, leg type and crawler type, the crawler type has attracted wide attention because of its strong ability to overcome obstacles, small settlement and great traction, but the mechanism of its driving gear train is complex. The heavy weight hinders the application of lunar surface detection. Based on the basic principles of piezoelectric excitation and friction driving, the new piezoelectric driving principle of tracked lunar patrol detector is explored in this paper, aiming at simple structure, small weight, low energy consumption and strong anti-pollution ability. On the basis of the previous research on the sticker type lunar rover, a kind of sandwich piezoelectric driving crawler driving system is proposed. The piezoelectric oscillator structure optimization and the kinematics and dynamic behavior of the surface particle are carried out. The interaction between the contact boundary conditions and the dynamic behavior of the structure: 1. This paper analyzes the crawler driving principle of the sticker piezoelectric vibrator. Aiming at the problem of low power, the principle and method of using the sandwich piezoelectric vibrator to drive the crawler are put forward. Through the voltage excitation of 90 degree phase difference in four groups of piezoelectric ceramics in the beam, the traveling waves along the circumference of the two end rings of the beam are excited, and the crawler motion is driven by friction. Aiming at the working mode frequency difference and the interference mode frequency difference, the piezoelectric oscillator structure is optimized by using the multi-objective optimization toolbox of Isight optimization software and the iterative operation of ANSYS finite element program. The operating mode frequency difference is reduced from 605Hz before optimization to 8 Hz, and the frequency difference of interference mode before and after optimization increases from 169Hz and 400Hz to 1098Hz and 1323Hz respectively. The experimental results show that the optimal operating frequency is 35.1kHz, the start-up time is 120msand the braking time is 25ms; the instantaneous motion velocity varies periodically at 500V _ (pp) driving voltage, and the average motion speed is 72mm / s at 500V _ (pp) driving voltage, and at 320V_ (pp) driving voltage, the optimal operating frequency is 35.1 kHz, the braking time is 25ms, the average speed is 72mm / s at 500V _ (pp) driving voltage, and the driving voltage is 320V _ (pp). When the driving voltage is 300V _ (pp), the maximum load weight is 1.44kg (prototype deadweight 0.4kg). In this paper, the structure design and working mechanism of the sandwich piezoelectric drive crawler driving system are analyzed. The feasibility of the design scheme is verified by experiments on the prototype of the principle, but in the theoretical modeling, the assembly process of each component, Further improvements and improvements in design and experiment are needed, including the scientific interpretation of the relationship between contact stiffness, roughness, pre-pressure and velocity, and the study of the environmental adaptability of the lunar surface.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:V476.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉方安;履帶式摩托車[J];小型內(nèi)燃機(jī);1982年01期
2 崔丕瑛;履帶式鉆車漲圈連接的改進(jìn)[J];工程機(jī)械;1989年05期
3 楊長殭;三履帶式運(yùn)行裝置轉(zhuǎn)彎工作情況[J];中國機(jī)械工程;1996年02期
4 ;東方紅—120R橡膠履帶式運(yùn)泥車[J];農(nóng)機(jī)市場(chǎng);2006年03期
5 張曦;;履帶式行走裝置用組合式驅(qū)動(dòng)輪設(shè)計(jì)[J];安徽科技;2012年04期
6 尚滿喜;;可變位履帶式地震廢墟搜救機(jī)器人的設(shè)計(jì)[J];機(jī)械工程與自動(dòng)化;2013年04期
7 周用權(quán);王修斌;;履帶式機(jī)耕船 用于多種類型農(nóng)田作業(yè)的初步理論分析——浮式、可調(diào)船體、托板、履帶式機(jī)耕船的建議方案[J];湖北機(jī)械;1979年02期
8 屈福平;氣動(dòng)履帶式鉆車的潤滑油選用[J];鑿巖機(jī)械氣動(dòng)工具;2004年04期
9 汪新軍;;方圓首臺(tái)履帶式混凝土攪拌運(yùn)輸車[J];工程機(jī)械;2012年11期
10 楊長殭;履帶式運(yùn)行裝置轉(zhuǎn)彎工作情況[J];工程機(jī)械;1979年05期
相關(guān)會(huì)議論文 前4條
1 馬家棟;劉志中;;履帶式行走支架遙控收發(fā)射機(jī)的研制[A];第十一屆全國煤礦自動(dòng)化學(xué)術(shù)年會(huì)論文專輯[C];2001年
2 孫鵬;崔天寶;王濤;張寧;;自行履帶式SF6多功能充氣裝置[A];山東電機(jī)工程學(xué)會(huì)2012年度學(xué)術(shù)年會(huì)論文集[C];2012年
3 德米特里.阿加波夫;羅曼.科瓦列夫;德米特里.波格雷洛夫;雷強(qiáng);;虛擬環(huán)境中履帶式機(jī)器人實(shí)時(shí)動(dòng)力學(xué)仿真[A];第八屆中國CAE工程分析技術(shù)年會(huì)暨2012全國計(jì)算機(jī)輔助工程(CAE)技術(shù)與應(yīng)用高級(jí)研討會(huì)論文集[C];2012年
4 董長征;孫靜波;;履帶式電加熱裝置在軸件烘裝襯套中的應(yīng)用[A];2000年大連國際海事技術(shù)交流會(huì)論文集(第一卷)[C];2000年
相關(guān)重要報(bào)紙文章 前10條
1 白明放 孫曉新 蔣文斌 朱喜安;履帶式草皮修剪機(jī)的研制與應(yīng)用[N];黃河報(bào);2007年
2 袁春 張彥楠;履帶式山地?fù)岆U(xiǎn)綜合車通過驗(yàn)收[N];石油管道報(bào);2011年
3 記者 李青 通訊員 王磊;小型履帶式多功能拖拉機(jī)首次亮相津洽會(huì)[N];中國技術(shù)市場(chǎng)報(bào);2010年
4 ;新品履帶式收割機(jī)[N];山西科技報(bào);2002年
5 YMG記者 劉新國 通訊員 郗良文;3200噸履帶式大吊車 歷時(shí)68分鐘完成吊裝[N];煙臺(tái)日?qǐng)?bào);2010年
6 記者 何欣;我市造出首臺(tái)履帶式全液壓鉆機(jī)[N];重慶日?qǐng)?bào);2014年
7 劉薇 趙凱 陳志奎;千臺(tái)履帶式高性能聯(lián)合收割機(jī)上陣[N];鎮(zhèn)江日?qǐng)?bào);2009年
8 記者 徐瑩波;桂林市華力重工履帶式錨桿鉆車生產(chǎn)基地項(xiàng)目竣工[N];桂林日?qǐng)?bào);2011年
9 ;意大利Trafilix再次訂購履帶式聯(lián)合拉拔作業(yè)線[N];世界金屬導(dǎo)報(bào);2009年
10 楚聞;黑牛公司研制成功DLK履帶式無菌磚型灌裝機(jī)[N];中國包裝報(bào);2009年
相關(guān)碩士學(xué)位論文 前10條
1 李季;林間微型履帶運(yùn)輸機(jī)懸架系統(tǒng)設(shè)計(jì)與平順性分析[D];東北林業(yè)大學(xué);2016年
2 舒承有;夾心式壓電驅(qū)動(dòng)履帶行駛系統(tǒng)的研究[D];南京航空航天大學(xué);2016年
3 蔡婷;針對(duì)履帶式移動(dòng)平臺(tái)的運(yùn)動(dòng)控制系統(tǒng)設(shè)計(jì)[D];成都理工大學(xué);2016年
4 王智強(qiáng);基于UWB的履帶式搬運(yùn)機(jī)跟隨系統(tǒng)研究[D];重慶理工大學(xué);2016年
5 孔文;作為WSN移動(dòng)節(jié)點(diǎn)的履帶機(jī)器人路徑跟蹤控制研究[D];安徽農(nóng)業(yè)大學(xué);2016年
6 方策;履帶式割草機(jī)的設(shè)計(jì)與研究[D];華北水利水電大學(xué);2016年
7 郭偉;探測(cè)履帶車控制系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[D];南京理工大學(xué);2017年
8 劉鋒;基于藍(lán)牙的履帶車遙控技術(shù)研究[D];西北農(nóng)林科技大學(xué);2011年
9 郭潔;履帶式下艙起重機(jī)吊臂的優(yōu)化設(shè)計(jì)研究[D];天津大學(xué);2012年
10 魏超;履帶式聯(lián)合采育機(jī)新型作業(yè)臂的設(shè)計(jì)與研究[D];北京林業(yè)大學(xué);2012年
,本文編號(hào):2230754
本文鏈接:http://sikaile.net/kejilunwen/hangkongsky/2230754.html