多級軸流壓氣機(jī)內(nèi)復(fù)雜流動(dòng)結(jié)構(gòu)的實(shí)驗(yàn)和數(shù)值研究
[Abstract]:Complex viscous flow in the end-wall region seriously degrades the aerodynamic performance of a multistage axial compressor. Existing studies have shown that the loss of the end-wall, including tip clearance flow and secondary flow, usually accounts for 50%-70% of the total loss of flow in the compressor. Therefore, a thorough understanding of the flow field structure in the multistage axial compressor, especially in the end-wall region, as well as its main physical properties is given. The mechanism has important practical significance for improving the aerodynamic performance of high-pressure compressors and even aero-engines. In view of the small size and high speed of the rear stage of high-pressure compressors, it is difficult to carry out detailed flow field measurement technology, high cost, high risk and long cycle, low-speed simulation experiments have been applied to a certain extent, but so far domestic research in this field has been carried out. Experimental studies are still scarce, which greatly limits the improvement of design capability of high-pressure compressors for aero-engines in China. In this paper, based on abundant and comprehensive experimental measurements, steady/unsteady CFD calculations are supplemented by two four-stage compressors used in low-speed simulation experiments of high-pressure compressors for a certain validator and a blade-tip critical rotor A and A. A non-tip critical rotor B was developed to study the aerodynamic performance and internal flow structure of a compressor. The main flow structures in the compressor were obtained, including the flow characteristics of the quasi-repetitive stage, the tip leakage flow and its interface with the mainstream gradually flattened with the leading edge as the flow rate decreased, and the blade boundary in the stator passage. A pair of angular vortices formed along the layer and in the corner region of the suction surface at both ends seriously affect the performance of the compressor. The stator with a larger bow first appears to be recirculated in the suction surface blade with the decrease of flow rate. The physical mechanism of complex steady/unsteady flow interaction and the source of high flow loss in a multistage axial compressor are revealed. Based on the understanding of the complex flow structure inside the prototype compressor, advanced blade design technology is adopted to improve the flow in the hub region of the prototype compressor and improve the aerodynamic performance of the compressor, which provides the necessary support for the design of the high-pressure compressor of the contemporary high-performance aeroengine in China. Based on the "simulation criteria" parameters, the aerodynamic design and detailed flow structure of a low-speed prototype 4-stage repetitive axial compressor were studied experimentally. The aerodynamic design includes the establishment of simulation objectives, the determination of the overall parameters of the low-speed simulation stage, the S2 aerodynamic design, the repetitive stage and the quasi-repetitive stage blade design, and the quasi-repetitive stage design. The inlet blockage was incorporated into the design of the low-speed simulated compressor, and the low-speed simulated design system was improved. The reliability and accuracy of the design of the low-speed compressor were effectively improved. The uncertainty of the main aerodynamic parameters and the main factors affecting the uncertainty were analyzed. The static pressure distribution on the stator surface and the measurement of the rotor tip flow field in the rotor and stator blade passages show the detailed flow field structure in the whole simulation stage, including the characteristics of the quasi-repetitive stage flow, the variation of the tip leakage flow and its interface with the main flow conditions. The results show that the blade load in the hub region of the third stage rotor of a prototype compressor is high and there is a certain flow separation. At the same time, the stator hub also has a large flow blockage, separation and higher total pressure loss. Part 2 is based on the recognition of the complex flow structure in the prototype compressor. In order to reduce the flow loss in the hub region, a parameterized study of stacking rule was carried out on the stator for the simulated stage rotation. The selection of the end bending angle was made clear to reduce the flow loss in the hub region. The improvement scheme includes the following elements: rotor "J" The experimental results show that the efficiency of the four-stage compressor is increased by about one percentage point, the total pressure rise coefficient is increased by about 1.4%, the total pressure rise coefficient of the third stage is increased by about 10%, and the unstable flow rate is basically the same as that of the prototype. The structure reflects the new three-dimensional blade design characteristics, and the main physical mechanism of improving the flow structure and aerodynamic performance of the compressor by using the new blade shape is studied with CFD calculation results. The blade passage frequency (fBPF) has higher energy and root mean square of total pressure. The interaction between stator boundary layer and stator boundary layer in the preceding stage enhances the high-order harmonic energy. This phenomenon is more obvious near the blade tip and compressor outlet. The energy amplitude of 2fBPF in the blade tip region of the third stage is eight times that of fBPF. Aerodynamic noise and vibration control in a compressor are of great importance. Part 3 is a detailed numerical study of the tip region of a blade-tip stall rotor A and a non-tip stall rotor B. The study reveals the main flow structure of tip leakage vortices. For non-tip critical rotor B, the blade with a clearance height of 62.5% or less has been investigated. In the tip region, the fluid flowing from the leading edge of the tip clearance will entrap into the tip leakage vortex. With the increase of the tip clearance height, the tip leakage vortex occupies the position from inside to outside, while the flow above 62.5% clearance height does not entrap into the tip leakage vortex, but mainly presents secondary leakage. Self-excited unsteadiness occurs at the tip of rotor A blade, which is strongly dependent on tip clearance size and has little to do with the thickness of upper boundary layer. Two blockage zones are formed at the tip of rotor A blade, in which the large blockage zone formed by the interaction of tip secondary vortex and broken tip leakage vortex will produce a large flow loss, which will be directly related to the thickness of upper boundary layer. The aerodynamic stability of the rotor is determined. Eliminating or at least weakening the strength of the secondary vortex by effective flow control method will help to widen the stable operating range of the rotor.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:V233
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 羅俊,陳林根,孫豐瑞,倪寧;一維多級軸流壓氣機(jī)性能的解析優(yōu)化[J];熱科學(xué)與技術(shù);2003年01期
2 閻德有;起動(dòng)過程軸流壓氣機(jī)的模型化[J];航空學(xué)報(bào);1985年05期
3 金永民;軸流壓氣機(jī);O(shè)計(jì)探討[J];熱能動(dòng)力工程;1988年06期
4 郁新華,廉小純,吳虎,張麗娟;軸流壓氣機(jī)過失速行為的數(shù)值模擬[J];南京航空航天大學(xué)學(xué)報(bào);2000年02期
5 羅俊,陳林根,孫豐瑞,倪寧;一維多級軸流壓氣機(jī)性能的解析優(yōu)化[J];海軍工程大學(xué)學(xué)報(bào);2002年06期
6 趙勇,胡駿;均勻與非均勻進(jìn)氣條件下多級軸流壓氣機(jī)性能計(jì)算[J];航空發(fā)動(dòng)機(jī);2003年04期
7 羅俊,陳林根,孫豐瑞,倪寧;給定通流部分形狀時(shí)軸流壓氣機(jī)級性能優(yōu)化[J];燃?xì)鉁u輪試驗(yàn)與研究;2003年01期
8 張燎原,胡駿;軸流壓氣機(jī)葉片排流場非定常頻譜特性試驗(yàn)技術(shù)[J];燃?xì)鉁u輪試驗(yàn)與研究;2004年01期
9 程榮輝;軸流壓氣機(jī)設(shè)計(jì)技術(shù)的發(fā)展[J];燃?xì)鉁u輪試驗(yàn)與研究;2004年02期
10 吉桂明;;軸流壓氣機(jī)流動(dòng)的控制技術(shù)[J];熱能動(dòng)力工程;2006年02期
相關(guān)會(huì)議論文 前10條
1 李長征;符嬈;熊兵;;軸流壓氣機(jī)氣動(dòng)失穩(wěn)信號(hào)分析[A];2010航空試驗(yàn)測試技術(shù)學(xué)術(shù)交流會(huì)論文集[C];2010年
2 王華青;林森;;軸流壓氣機(jī)設(shè)計(jì)方法研究和設(shè)計(jì)實(shí)例[A];中國航空學(xué)會(huì)第七屆動(dòng)力年會(huì)論文摘要集[C];2010年
3 丁建國;楊慶長;;某四級軸流壓氣機(jī)設(shè)計(jì)與全三維數(shù)值仿真研究[A];第13屆中國系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)年會(huì)論文集[C];2011年
4 張靖煊;聶超群;陳靜宜;;葉頂微噴氣提高旋轉(zhuǎn)畸變條件下軸流壓氣機(jī)失穩(wěn)裕度的機(jī)理分析[A];大型飛機(jī)關(guān)鍵技術(shù)高層論壇暨中國航空學(xué)會(huì)2007年學(xué)術(shù)年會(huì)論文集[C];2007年
5 侯安平;周盛;;軸流壓氣機(jī)尾流撞擊效應(yīng)數(shù)學(xué)模型的探索[A];2003空氣動(dòng)力學(xué)前沿研究論文集[C];2003年
6 姚宏;張廣軍;王相波;;航空發(fā)動(dòng)機(jī)壓氣機(jī)系統(tǒng)混沌預(yù)測[A];第十一屆全國非線性振動(dòng)學(xué)術(shù)會(huì)議暨第八屆全國非線性動(dòng)力學(xué)和運(yùn)動(dòng)穩(wěn)定性學(xué)術(shù)會(huì)議論文摘要集[C];2007年
7 龔建波;聶超群;;軸流壓氣機(jī)進(jìn)氣含濕量變化與失速特征的關(guān)聯(lián)[A];大型飛機(jī)關(guān)鍵技術(shù)高層論壇暨中國航空學(xué)會(huì)2007年學(xué)術(shù)年會(huì)論文集[C];2007年
8 向宏輝;葛寧;任銘林;;基于試驗(yàn)數(shù)據(jù)的軸流壓氣機(jī)喘振邊界經(jīng)驗(yàn)預(yù)估方法[A];中國航空學(xué)會(huì)第七屆動(dòng)力年會(huì)論文摘要集[C];2010年
9 屠寶鋒;胡駿;;徑向總壓畸變對軸流壓氣機(jī)氣動(dòng)穩(wěn)定性影響的試驗(yàn)研究[A];中國航空學(xué)會(huì)第七屆動(dòng)力年會(huì)論文摘要集[C];2010年
10 鄭新前;侯安平;周盛;;利用合成射流控制軸流壓氣機(jī)中的非定常分離[A];第十屆全國分離流、旋渦和流動(dòng)控制會(huì)議論文集[C];2004年
相關(guān)博士學(xué)位論文 前7條
1 張晨凱;多級軸流壓氣機(jī)內(nèi)復(fù)雜流動(dòng)結(jié)構(gòu)的實(shí)驗(yàn)和數(shù)值研究[D];南京航空航天大學(xué);2015年
2 邵衛(wèi)衛(wèi);風(fēng)扇/軸流壓氣機(jī)最大負(fù)荷設(shè)計(jì)技術(shù)探索[D];中國科學(xué)院研究生院(工程熱物理研究所);2008年
3 劉飛;低速軸流壓氣機(jī)中流動(dòng)分離的定常與非定?刂蒲芯縖D];華中科技大學(xué);2008年
4 馬文生;多級軸流壓氣機(jī)氣動(dòng)優(yōu)化設(shè)計(jì)研究[D];清華大學(xué);2009年
5 王Pr臣;穩(wěn)定性調(diào)控狀態(tài)下的軸流壓氣機(jī)轉(zhuǎn)子葉頂尾跡實(shí)驗(yàn)研究[D];中國科學(xué)院研究生院(工程熱物理研究所);2013年
6 朱榮凱;氦氣軸流壓氣機(jī)相似;芯縖D];哈爾濱工程大學(xué);2008年
7 李繼超;軸流壓氣機(jī)葉頂噴氣擴(kuò)穩(wěn)技術(shù)—機(jī)理及智能調(diào)控[D];中國科學(xué)院研究生院(工程熱物理研究所);2012年
相關(guān)碩士學(xué)位論文 前10條
1 詹長庚;軸流壓氣機(jī)不同工況下燃?xì)廨啓C(jī)轉(zhuǎn)軸受力及振動(dòng)特性分析[D];華北電力大學(xué);2015年
2 黃穩(wěn);軸流壓氣機(jī)動(dòng)態(tài)測試信號(hào)的特征分析方法研究[D];南京航空航天大學(xué);2009年
3 高坤;軸流壓氣機(jī)葉片優(yōu)化設(shè)計(jì)及分析[D];西北工業(yè)大學(xué);2007年
4 侯樂毅;軸流壓氣機(jī)葉頂間隙流動(dòng)研究[D];西北工業(yè)大學(xué);2004年
5 王亮亮;多級軸流壓氣機(jī)三維數(shù)值模擬[D];哈爾濱工程大學(xué);2008年
6 張燎原;軸流壓氣機(jī)葉片排流場非定常頻譜特性實(shí)驗(yàn)研究[D];南京航空航天大學(xué);2004年
7 蘇麗;軸流壓氣機(jī)濕壓縮流場數(shù)值模擬[D];哈爾濱工程大學(xué);2009年
8 芮長勝;周向總壓畸變對軸流壓氣機(jī)穩(wěn)定性影響的模擬研究[D];西北工業(yè)大學(xué);2007年
9 杜文海;跨聲速多級軸流壓氣機(jī)非設(shè)計(jì)點(diǎn)性能預(yù)測[D];西北工業(yè)大學(xué);2007年
10 閆雪山;軸流壓氣機(jī)進(jìn)氣蝸殼流場分析[D];哈爾濱工程大學(xué);2008年
,本文編號(hào):2208684
本文鏈接:http://sikaile.net/kejilunwen/hangkongsky/2208684.html