超聲速球錐型飛行器氣動(dòng)熱數(shù)值計(jì)算與研究
本文選題:超聲速 + 球錐體; 參考:《南京理工大學(xué)》2015年碩士論文
【摘要】:本文基于邊界層理論,采用經(jīng)典的理論經(jīng)驗(yàn)公式和數(shù)值傳熱相耦合的方法,對零攻角超聲速球錐型飛行器氣動(dòng)熱進(jìn)行模擬計(jì)算,得到其表面熱流密度值及飛行器內(nèi)部溫度值分布,較為精確地分析飛行器的氣動(dòng)熱環(huán)境,為超聲速飛行器外形設(shè)計(jì)優(yōu)化和頭部氣動(dòng)熱設(shè)計(jì)、熱防護(hù)提供了重要的理論參考。一方面對超聲速圓錐繞流流場進(jìn)行求解,確定球錐外形飛行器超聲速飛行條件下表面所形成的激波形狀和激波角,通過激波前后氣流參數(shù)關(guān)系式計(jì)算波后氣流參數(shù),并利用二次激波膨脹波法結(jié)合修正牛頓理論確定飛行器表面邊界層外緣氣流參數(shù),然后從二維平板低速層流的布拉修斯解出發(fā),經(jīng)相似比擬、Eckert參考焓法及高溫氣體特性等修正,推導(dǎo)得出的零攻角超聲速球錐外形飛行器表面層流邊界層內(nèi)氣動(dòng)傳熱熱流密度公式;另一方面建立并生成球錐外形飛行器模型及網(wǎng)格,將其導(dǎo)入程序中作為研究對象,并將推導(dǎo)得到的熱流密度公式代入程序中作為計(jì)算模型的邊界條件,然后采用有限體積法對控制方程(組)進(jìn)行離散,最后通過迭代計(jì)算得到超聲速飛行器氣動(dòng)熱環(huán)境。本文主要研究內(nèi)容有三部分:模擬球錐外形飛行器頭部平面模型和三維模型在超聲速飛行條件下的氣動(dòng)傳熱狀況,結(jié)果表明在相同超聲速飛行條件下,與平面模型相比三維模型產(chǎn)生的氣動(dòng)熱環(huán)境更為嚴(yán)峻,且隨著計(jì)算馬赫數(shù)的增大,這種惡劣的熱環(huán)境變得越來越嚴(yán)重;其次選取了三種不同半錐角的球錐外形飛行器模型,在相同計(jì)算條件下模擬結(jié)果顯示,較高馬赫數(shù)飛行條件下,對于頭部曲率半徑相同的模型,在合理范圍內(nèi)增大其半錐角,可以降低飛行器頭部高溫區(qū)域附近的溫度值,即改善球錐外形飛行器在超聲速飛行下惡劣的氣動(dòng)熱環(huán)境;最后將飛行器模型內(nèi)部空腔內(nèi)表面和內(nèi)空間環(huán)境之間的熱傳遞考慮在內(nèi)進(jìn)行模擬計(jì)算,結(jié)果顯示在較高的馬赫數(shù)飛行條件下,考慮球錐外形飛行器內(nèi)部封閉空腔內(nèi)自然對流傳熱時(shí),其所承受惡劣氣動(dòng)熱環(huán)境得到了顯著的改善。
[Abstract]:Based on the boundary layer theory, the classical empirical formula and numerical heat transfer coupling method are used to simulate the aerodynamic heat of a zero angle of attack supersonic spherical conical vehicle. The surface heat flux and the temperature distribution of the aircraft are obtained, and the aerodynamic thermal environment of the aircraft is analyzed accurately, which provides an important theoretical reference for the optimization of the shape design of the supersonic vehicle and the aerodynamic thermal design of the head. On the one hand, the flow field around the supersonic cone is solved to determine the shock wave shape and shock angle formed on the surface of the spherical cone shape aircraft under the supersonic flight condition, and the airflow parameters after the wave are calculated by the relation between the air flow parameters before and after the shock wave. Using the second shock expansion wave method and modified Newton theory, the outer boundary flow parameters of the aircraft surface boundary layer are determined. Then, based on the Brownian solution of the two-dimensional plate low speed laminar flow, the Eckert reference enthalpy method and the high temperature gas characteristics are compared with each other. The formula of aerodynamic heat transfer heat flux in laminar boundary layer on the surface of spherical conical shape vehicle with zero angle of attack is derived. On the other hand, the model and mesh of spherical cone shape aircraft are established and generated, and the model is introduced into the program as the object of study. The derived heat flux formula is added to the program as the boundary condition of the model, then the control equations are discretized by the finite volume method, and the aerodynamic thermal environment of the supersonic vehicle is obtained by iterative calculation. In this paper, there are three main parts: simulating the aerodynamic heat transfer of the spherical conical shape aircraft head plane model and three-dimensional model under supersonic flight conditions, the results show that under the same supersonic flight conditions, Compared with the plane model, the aerodynamic thermal environment generated by the 3D model is more severe, and with the increase of the Mach number, the bad thermal environment becomes more and more serious. Secondly, three kinds of spherical cone shape aircraft models with different semi-conical angles are selected. The simulation results under the same calculation conditions show that for the model with the same curvature radius of the head, the temperature near the high temperature region of the head can be reduced by increasing the semi-conical angle within a reasonable range under the condition of higher Mach number flight. That is to improve the bad aerodynamic and thermal environment of the spherical conical shape aircraft under supersonic flight. Finally, the heat transfer between the inner cavity surface and the inner space environment of the aircraft model is taken into account in the simulation calculation. The results show that when the natural convection heat transfer in the closed cavity of the spherical conical aircraft is considered under the condition of higher Mach number flight, the adverse aerodynamic thermal environment is greatly improved.
【學(xué)位授予單位】:南京理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:V211
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 馬繼魁;吳頌平;王超;;高超聲速鈍頭體表面熱流的數(shù)值模擬[J];科學(xué)技術(shù)與工程;2010年36期
2 楊愷;高效偉;;高超聲速氣動(dòng)熱環(huán)境工程算法[J];導(dǎo)彈與航天運(yùn)載技術(shù);2010年04期
3 趙曉利;孫振旭;安亦然;鄭鋼鐵;;高超聲速氣動(dòng)熱的耦合計(jì)算方法研究[J];科學(xué)技術(shù)與工程;2010年22期
4 毛枚良;江定武;鄧小剛;;高超聲速層流氣動(dòng)熱預(yù)測混合算法研究[J];空氣動(dòng)力學(xué)學(xué)報(bào);2009年03期
5 呂紅慶;王振清;王永軍;張翠娥;靳承濱;;高超聲速鈍頭體氣動(dòng)熱分析[J];導(dǎo)彈與航天運(yùn)載技術(shù);2008年03期
6 陳新虹;陳濤;趙潤祥;;高超聲速彈丸頭部氣動(dòng)熱研究[J];彈道學(xué)報(bào);2007年04期
7 劉昕;鄧小剛;毛枚良;;高超聲速飛行器外形熱流密度分布計(jì)算的高精度方法研究[J];宇航學(xué)報(bào);2006年02期
8 周成平;涂素平;蔡超;張義廣;;高超音速飛行器頭罩氣動(dòng)熱流場數(shù)值模擬[J];華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年01期
9 雷延花,徐敏,陳士櫓;高超音速飛行器氣動(dòng)加熱計(jì)算[J];上海航天;2001年05期
10 賀國宏,高曉成,龐勇;高超聲速再入體表面熱流數(shù)值模擬研究[J];空氣動(dòng)力學(xué)學(xué)報(bào);2001年02期
,本文編號:2058450
本文鏈接:http://sikaile.net/kejilunwen/hangkongsky/2058450.html