無(wú)人機(jī)飛行路線(xiàn)控制系統(tǒng)設(shè)計(jì)
本文選題:BD2/GPS + GPRS; 參考:《成都理工大學(xué)》2016年碩士論文
【摘要】:由于無(wú)人機(jī)是通過(guò)無(wú)線(xiàn)遙控的方式完成自動(dòng)飛行和執(zhí)行各種任務(wù),具有安全零傷亡、低能耗、重復(fù)利用率高、控制方便等優(yōu)點(diǎn),因此得到了各個(gè)國(guó)家、各行各業(yè)的高度重視和廣泛應(yīng)用。尤其以美國(guó)為代表,無(wú)論是在軍事、民用、環(huán)境保護(hù)還是科學(xué)研究中,都將無(wú)人機(jī)的使用發(fā)揮到淋漓盡致,其擁有全球最先進(jìn)的“捕食者”和“全球鷹”戰(zhàn)斗無(wú)人機(jī)、監(jiān)測(cè)鳥(niǎo)類(lèi)的“大烏鴉”無(wú)人機(jī)、民用用途的“伊哈納”無(wú)人機(jī)等等。我國(guó)在無(wú)人機(jī)研制方面也取得了一定的成就,擁有技術(shù)卓越的“翔龍”和“暗箭”高空高速無(wú)人偵查機(jī)、多用途的“黔中”無(wú)人機(jī)、探測(cè)海洋的“天驕”無(wú)人機(jī)、中繼通訊的“蜜蜂”無(wú)人機(jī)等等。在未來(lái),隨著現(xiàn)代化工業(yè)技術(shù)、信息技術(shù)、自動(dòng)化技術(shù)、航天技術(shù)等高新技術(shù)的迅速發(fā)展,無(wú)人機(jī)技術(shù)將日趨成熟,性能日益完善,為此將擁有更為廣闊的應(yīng)用前景。為確保無(wú)人機(jī)能夠有效地完成各種飛行任務(wù),研發(fā)者開(kāi)發(fā)了各種技術(shù)方式的飛行控制系統(tǒng),完成對(duì)無(wú)人機(jī)的起飛、飛行控制、著陸以及相應(yīng)目標(biāo)任務(wù)等操作的控制。飛行路線(xiàn)控制是飛行控制系統(tǒng)中最基礎(chǔ)也是最核心的功能控制部分,其它所有的飛行任務(wù)控制都是飛行路線(xiàn)控制的基礎(chǔ)之上實(shí)現(xiàn)。目前對(duì)于無(wú)人機(jī)飛行路線(xiàn)的控制已有各種各樣方式的系統(tǒng),但大多數(shù)系統(tǒng)都存在一定缺陷,如有些系統(tǒng)操作過(guò)于繁雜,不夠智能化;有些系統(tǒng)只能在視距范圍遙控?zé)o人機(jī),嚴(yán)重限制了無(wú)人機(jī)的使用;有些系統(tǒng)過(guò)于專(zhuān)用化,不能適用于大多數(shù)類(lèi)型的無(wú)人機(jī);有些比較完善的系統(tǒng),造價(jià)又過(guò)于昂貴,等等一系列問(wèn)題。針對(duì)以上存在的這些問(wèn)題,本課題提出了一種成本低、遙控距離遠(yuǎn)、智能化、高效化、適用性廣的無(wú)人機(jī)飛行路線(xiàn)控制系統(tǒng)設(shè)計(jì)方案。該系統(tǒng)方案包括兩大部分,一部分是操作人員所處的地面監(jiān)控系統(tǒng),一部分是無(wú)人機(jī)端的受控系統(tǒng),實(shí)現(xiàn)的機(jī)制主要是無(wú)人機(jī)不斷地將自身的定位信息實(shí)時(shí)地傳送給地面控制系統(tǒng),地面控制系統(tǒng)將無(wú)人機(jī)位置信息通過(guò)電子地圖可視化顯示給操作人員,操作人員結(jié)合本次飛行任務(wù),采用靈活的鼠標(biāo)繪制方式在地圖上繪制預(yù)定的飛行路線(xiàn),地面控制系統(tǒng)對(duì)繪制路線(xiàn)進(jìn)行自動(dòng)處理生成可用的路線(xiàn)控制信息幀并發(fā)送給無(wú)人機(jī)受控系統(tǒng),無(wú)人機(jī)受控系統(tǒng)接收到位置控制信息幀,不斷結(jié)合實(shí)時(shí)的方位信息得到飛行控制信息,從而遙控?zé)o人機(jī)按照預(yù)定路線(xiàn)飛行。此外,為方便用戶(hù)以后對(duì)歷史數(shù)據(jù)的查看,以分析總結(jié)得到一些有價(jià)值的信息,地面監(jiān)控系統(tǒng)還包含了對(duì)預(yù)定路線(xiàn)和無(wú)人機(jī)歷史飛行路線(xiàn)的存儲(chǔ)、查詢(xún)和在地圖中回放功能。基于GIS技術(shù)的地面監(jiān)控系統(tǒng)的具體實(shí)現(xiàn)是在Windows操作系統(tǒng)上,采用Visual Basic作為系統(tǒng)開(kāi)發(fā)環(huán)境并結(jié)合MSComm串口通信技術(shù)、Mapx二次開(kāi)發(fā)組件技術(shù)、Winsock網(wǎng)絡(luò)接口技術(shù)以及Access數(shù)據(jù)庫(kù)技術(shù)完成軟件設(shè)計(jì),實(shí)現(xiàn)與無(wú)人機(jī)受控系統(tǒng)的無(wú)線(xiàn)通信、GIS系統(tǒng)操作和監(jiān)控、歷史數(shù)據(jù)存儲(chǔ)和重現(xiàn)等,其中實(shí)驗(yàn)區(qū)域的電子地圖采用Mapinfo Professional開(kāi)發(fā)軟件繪制完成,并創(chuàng)新性地設(shè)計(jì)并繪制了畫(huà)面簡(jiǎn)潔的帶高層信息的二點(diǎn)三維矢量地圖,而對(duì)于繪制路線(xiàn)的優(yōu)化和提取處理采用了垂距比值法和最小R值法。無(wú)人機(jī)端使用BDS-2/GPS雙衛(wèi)星系統(tǒng)對(duì)無(wú)人機(jī)實(shí)時(shí)位置進(jìn)行高精度的定位,采用雙串口單片機(jī)進(jìn)行運(yùn)算控制處理,實(shí)時(shí)的飛行控制信息采用了幾何空間算法得到,另外采用LCD顯示輸出控制信息?盏貎啥讼到y(tǒng)的通信連接采用近距離的無(wú)線(xiàn)數(shù)傳電臺(tái)和遠(yuǎn)距離的GPRS兩種通信技術(shù)結(jié)合的方式,實(shí)現(xiàn)廣域環(huán)境下低費(fèi)用的雙向通信。對(duì)于本系統(tǒng)的研究意義主要體現(xiàn)在如下幾個(gè)方面:(1)系統(tǒng)的硬件和軟件設(shè)計(jì)都采用了模塊化和接口化的設(shè)計(jì),使得系統(tǒng)易于改進(jìn)優(yōu)化和擴(kuò)展添加,在本系統(tǒng)的基礎(chǔ)上能夠很容易地嵌入其它任務(wù)控制系統(tǒng),由此本系統(tǒng)具有廣泛的適用性,可適用于各領(lǐng)域行業(yè)的無(wú)人機(jī)的飛行路線(xiàn)控制,如科學(xué)研究、軍事訓(xùn)練、航空拍攝、電線(xiàn)巡查、農(nóng)藥噴灑等等;(2)既可通過(guò)地面控制系統(tǒng)的地圖界面展現(xiàn)無(wú)人機(jī)實(shí)時(shí)定點(diǎn)位置,又可通過(guò)地圖繪制預(yù)定飛行路線(xiàn)并遙控?zé)o人機(jī)按此路線(xiàn)飛行,還可以通過(guò)地圖重現(xiàn)歷史路線(xiàn)信息,實(shí)現(xiàn)監(jiān)視、控制和查詢(xún)于一體的多功能系統(tǒng);(3)由于不再需要駕駛?cè)藛T親自駕駛無(wú)人機(jī)進(jìn)行飛行,當(dāng)需要飛往某些危險(xiǎn)區(qū)域中執(zhí)行飛行任務(wù)時(shí),操作人員只需要安全地待在遠(yuǎn)處的地面監(jiān)控中心便可清楚地監(jiān)視和可靠地控制無(wú)人機(jī)飛行前進(jìn);(4)由于操作人員只需要呆在遠(yuǎn)處對(duì)無(wú)人機(jī)的飛行進(jìn)行遙控,省去了駕駛?cè)藛T的具體操作,從長(zhǎng)遠(yuǎn)來(lái)看更加經(jīng)濟(jì),并且繁瑣的駕駛控制由系統(tǒng)高速的完成,提高了準(zhǔn)確性和效率性;(5)監(jiān)視和控制都具有較強(qiáng)的實(shí)時(shí)性,操作人員在任何時(shí)刻都可獲取無(wú)人機(jī)的位置信息,并對(duì)飛行路線(xiàn)迅速做出控制或改動(dòng)操作。
[Abstract]:Because unmanned aerial vehicle (UAV) can accomplish automatic flight and perform various tasks through wireless remote control, it has the advantages of safe zero casualties, low energy consumption, high reuse rate and convenient control. Therefore, the UAV has been highly valued and widely used in various countries and all walks of life, especially in military, civil, environmental protection, or environmental protection, especially in the United States. In scientific research, the use of UAVs is fully utilized, with the world's most advanced predators and Global Hawks fighting UAVs, the "big crows" UAVs of birds, the "Yi HNA" UAVs for civilian use, and so on. The more "Xianglong" and "dark arrow" high speed unmanned aerial surveillance machine, multi purpose "Guizhou" UAV, the exploration of the "Tianjiao" unmanned aerial vehicle of the ocean, the "bee" unmanned aerial vehicle of the relay communication and so on. In the future, with the rapid development of modern industrial technology, information technology, automation technology, space technology and other high-tech technology, unmanned machine technology In order to ensure that UAV can effectively complete various flight tasks, the researchers have developed a variety of technical flight control systems to complete the control of UAV takeoff, flight control, landing, and the corresponding target tasks. Control is the most basic and most core function control part of the flight control system. All other flight tasks control is based on the control of flight route. At present, there are various kinds of systems for the control of UAV flight route, but most of the systems have some defects, for example, some system operations are too high. It is complicated and unintelligentized; some systems can only remote control the UAV in the range of sight distance, which severely restrict the use of UAV; some systems are too specialized to apply to most types of UAV; some more perfect systems, cost too expensive, and so on. A design scheme of the UAV flight route control system with low cost, remote remote control distance, intelligent, efficient and widely applicable UAV flight route control system, which consists of two parts, part of the ground monitoring system in which the operator is located, and a part of the controlled system at the end of unmanned aircraft. The position information is transmitted to the ground control system in real time. The ground control system visualizations of the unmanned aerial vehicle position information through the electronic map to the operator. The operator combines the flight task and draws the predetermined flight route on the map with the flexible mouse drawing mode, and the ground control system automatically handles the drawing route. The available route is generated to control the information frame and send to the unmanned aerial vehicle controlled system. The unmanned aircraft controlled system receives the position control information frame, and continuously combines the real-time azimuth information to get the flight control information, thus the remote control unmanned aerial vehicle is flying in accordance with the scheduled route. In addition, the analysis and summary of the historical data for the convenience of the user after the user is analyzed and summarized. To some valuable information, the ground monitoring system also includes the storage, query and replay of the predetermined route and the UAV historical flight route. The concrete implementation of the ground monitoring system based on GIS technology is on the Windows operating system, using Visual Basic as the system development environment and combining with the MSComm serial communication technology. The operation, the Mapx two development component technology, the Winsock network interface technology and the Access database technology completed the software design, realized the wireless communication with the unmanned aerial vehicle controlled system, the operation and monitoring of the GIS system, the historical data storage and reappearance, among which the electronic map of the experimental area was completed by the Mapinfo Professional development software and was innovated. A simple two point 3D vector map with high level information is designed and drawn, and the vertical distance ratio method and the minimum R value method are used for the optimization and extraction of the drawing route. The unmanned aerial vehicle terminal uses BDS-2/GPS dual satellite system to locate the real time position of the unmanned aerial vehicle with high precision, and uses a double serial port single chip to carry out the operation control. The real-time flight control information is obtained by the geometric space algorithm, and the LCD display control information is used. The communication connection between the two ends of the air space system is combined with the near distance wireless digital radio and the remote GPRS two communication technologies to realize the two-way communication between the wide area and low cost. The research significance mainly embodies in the following aspects: (1) the design of hardware and software of the system has been designed with modularization and interface, which makes the system easy to improve and improve the optimization and extension, and can easily be embedded in other task control systems on the basis of this system, thus the system has extensive applicability and can be applied to the various leaders. The flight route control of the UAV in the domain industry, such as scientific research, military training, aerial photography, wire patrol, pesticide spraying, and so on. (2) it can not only display the real time fixed position of unmanned aerial vehicle through the map interface of the ground control system, but also can map the flight route by map and remote control unmanned aerial vehicle by this route, and can also pass the map A multi-functional system that reproduces historical route information to realize monitoring, control, and inquiry; (3) as no longer needs a driver to fly the UAV in person, and when it is necessary to fly to certain dangerous areas to perform a flight mission, the operator can be clearly monitored and dependable only in the distant ground monitoring center. Control unmanned aerial vehicle flight forward; (4) because the operator only needs to stay remote remote control of the UAV flight, it saves the specific operation of the driver, is more economical in the long run, and the tedious driving control is completed at high speed by the system, improves the accuracy and efficiency; (5) monitoring and control all have strong real time. The operator can obtain position information of UAV at any time, and control or alter operation of flight path quickly.
【學(xué)位授予單位】:成都理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:V279;V249
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 王樹(shù)源;;國(guó)外軍用無(wú)人機(jī)發(fā)展現(xiàn)狀與趨勢(shì)[J];硅谷;2014年18期
2 朱超平;;電子地圖制作方法與技術(shù)研究[J];電子世界;2013年22期
3 張雙成;王利;黃觀(guān)文;;全球?qū)Ш叫l(wèi)星系統(tǒng)GNSS最新進(jìn)展及帶來(lái)的機(jī)遇和挑戰(zhàn)[J];工程勘察;2010年08期
4 胡中華;趙敏;姚敏;撒鵬飛;;無(wú)人機(jī)航跡規(guī)劃技術(shù)研究及發(fā)展趨勢(shì)[J];航空電子技術(shù);2009年02期
5 魏玉業(yè);黃健柏;朱建軍;;平面不規(guī)則曲線(xiàn)特征點(diǎn)的提取[J];測(cè)繪科學(xué);2009年03期
6 吳益明;盧京潮;魏莉莉;潘文平;;無(wú)人機(jī)地面控制站系統(tǒng)的應(yīng)用研究[J];航空精密制造技術(shù);2006年03期
7 劉子玉;張宇;謝吉龍;;一種基于無(wú)線(xiàn)數(shù)傳電臺(tái)通訊的遠(yuǎn)程監(jiān)控系統(tǒng)[J];工業(yè)控制計(jì)算機(jī);2006年02期
8 唐強(qiáng),張翔倫,左玲;無(wú)人機(jī)航跡規(guī)劃算法的初步研究[J];航空計(jì)算技術(shù);2003年01期
9 駱訓(xùn)紀(jì) ,朱紀(jì)洪 ,孫增圻;無(wú)人機(jī)航跡系統(tǒng)研究[J];測(cè)控技術(shù);2002年11期
,本文編號(hào):1940233
本文鏈接:http://sikaile.net/kejilunwen/hangkongsky/1940233.html