四旋翼飛行器姿態(tài)控制及軌跡規(guī)劃的研究
發(fā)布時(shí)間:2018-05-17 12:23
本文選題:四旋翼飛行器 + 姿態(tài)控制 ; 參考:《北京理工大學(xué)》2016年碩士論文
【摘要】:本課題以四旋翼飛行器為對(duì)象,圍繞其姿態(tài)控制、最優(yōu)軌跡生成以及跟蹤控制器設(shè)計(jì)展開研究,搭建了飛行控制實(shí)驗(yàn)平臺(tái),研究了自抗擾技術(shù)在姿態(tài)控制算法,微分平坦理論在最優(yōu)軌跡生成及跟蹤控制器設(shè)計(jì)中的運(yùn)用,并進(jìn)行了相關(guān)實(shí)驗(yàn),主要研究內(nèi)容包括以下四個(gè)方面:首先,分別介紹了不同的空間飛行器姿態(tài)描述方法,研究了不同坐標(biāo)系之間的轉(zhuǎn)換關(guān)系,根據(jù)運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)方程推導(dǎo)了四旋翼飛行器的非線性數(shù)學(xué)模型。然后,研究了自抗擾控制技術(shù)在四旋翼飛行器姿態(tài)控制中的解耦控制方法。分別研究了微分跟蹤器、擴(kuò)張狀態(tài)觀測(cè)器、非線性反饋控制律,設(shè)計(jì)了虛擬控制量,三個(gè)通道形成了解耦控制器,并進(jìn)行仿真實(shí)驗(yàn)。其次,研究了微分平坦理論在四旋翼飛行器最優(yōu)軌跡生成中的應(yīng)用,提出了基于微分平坦理論的軌跡規(guī)劃算法。通過對(duì)歐拉-拉格朗日模型進(jìn)行坐標(biāo)變換,引入虛擬控制量,得到了更為簡約的系統(tǒng)動(dòng)態(tài)模型,證明了系統(tǒng)的平坦屬性,同時(shí)避免了控制奇點(diǎn)。通過利用平坦屬性和反饋線性化,設(shè)計(jì)了軌跡跟蹤控制器,能夠驅(qū)動(dòng)四旋翼飛飛行器快速跟蹤生成的參考軌跡。參考軌跡可以通過解含有約束的最優(yōu)問題得到。同時(shí),對(duì)跟蹤控制器和參考軌跡的生成進(jìn)行了仿真。最后,按照飛行控制模塊、航姿檢測(cè)模塊、動(dòng)力模塊和通信模塊的順序進(jìn)行了硬件系統(tǒng)的搭建,分析了各個(gè)模塊的功能和選型依據(jù)。同時(shí),對(duì)四旋翼飛行器的硬件和整體系統(tǒng)的最后調(diào)試,完成試驗(yàn)平臺(tái)的搭建工作。進(jìn)行了懸停試驗(yàn)和遙控試驗(yàn),通過分析采集的飛行數(shù)據(jù),驗(yàn)證了試驗(yàn)平臺(tái)的可行性和控制算法的有效性。
[Abstract]:Based on the attitude control, optimal trajectory generation and tracking controller design, a flight control experimental platform is built, and an active disturbance rejection algorithm is studied. The application of differential flatness theory in the design of optimal trajectory generation and tracking controller is carried out. The main research contents include the following four aspects: firstly, different attitude description methods of space vehicle are introduced respectively. Based on the kinematics and dynamics equations, the nonlinear mathematical model of four rotors is derived. Then, the decoupling control method of active disturbance rejection control (ADRC) in attitude control of four rotors is studied. The differential tracker the extended state observer and the nonlinear feedback control law are studied respectively. The virtual control quantity is designed and the decoupling controller is formed by the three channels and the simulation experiment is carried out. Secondly, the application of differential flatness theory to optimal trajectory generation of four-rotor aircraft is studied, and a trajectory planning algorithm based on differential flatness theory is proposed. By the coordinate transformation of Euler-Lagrange model and the introduction of virtual control quantity, a more simplified dynamic model of the system is obtained, and the flat property of the system is proved, while the control singularity is avoided. By using flatness and feedback linearization, a trajectory tracking controller is designed, which can drive the four-rotor flight vehicle to track the generated reference trajectory quickly. The reference trajectory can be obtained by solving the optimal problem with constraints. At the same time, the generation of tracking controller and reference trajectory is simulated. Finally, according to the sequence of flight control module, attitude detection module, power module and communication module, the hardware system is built, and the function and selection basis of each module are analyzed. At the same time, the final debugging of the hardware and the whole system of the four-rotor aircraft is carried out, and the construction of the test platform is completed. The hovering test and remote control test are carried out. The feasibility of the test platform and the validity of the control algorithm are verified by analyzing the collected flight data.
【學(xué)位授予單位】:北京理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:V249
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 宋亞平;淺談旋翼的防腐維護(hù)[J];航空維修與工程;2004年04期
2 _5^懔,
本文編號(hào):1901354
本文鏈接:http://sikaile.net/kejilunwen/hangkongsky/1901354.html
最近更新
教材專著