典型燃油多步化學(xué)反應(yīng)機(jī)理研究
本文選題:正癸烷 + 簡(jiǎn)化機(jī)理; 參考:《南京航空航天大學(xué)》2015年碩士論文
【摘要】:為了準(zhǔn)確預(yù)測(cè)RP-3型航空煤油的點(diǎn)火和燃燒特性,為在役或下一代航空發(fā)動(dòng)機(jī)主燃燒室、加力燃燒室或超燃沖壓發(fā)動(dòng)機(jī)燃燒室的兩相噴霧燃燒過(guò)程數(shù)值預(yù)估提供可靠的化學(xué)反應(yīng)機(jī)理計(jì)算模塊,本文對(duì)RP-3型航空煤油替代燃料及其多步化學(xué)反應(yīng)機(jī)理進(jìn)行基礎(chǔ)研究。本文具體研究?jī)?nèi)容包括以下三個(gè)方面:1)確定正癸烷作為RP-3型煤油的替代燃料及其詳細(xì)化學(xué)反應(yīng)機(jī)理(62組分344步),并在預(yù)混燃燒器中對(duì)正癸烷的燃燒特性進(jìn)行分析,和試驗(yàn)數(shù)據(jù)進(jìn)行對(duì)比分析,結(jié)果表明其可以作為RP-3型航空煤油的替代燃料。隨后基于敏感性分析和反應(yīng)流分析方法,對(duì)正癸烷詳細(xì)化學(xué)反應(yīng)機(jī)理進(jìn)行簡(jiǎn)化,建立一種36組分62步簡(jiǎn)化反應(yīng)機(jī)理,并在完全攪拌反應(yīng)器和預(yù)混燃燒器中進(jìn)行計(jì)算,與詳細(xì)機(jī)理結(jié)果和試驗(yàn)數(shù)據(jù)進(jìn)行對(duì)比。結(jié)果表明:完全攪拌反應(yīng)器中62步簡(jiǎn)化機(jī)理計(jì)算得到的平衡溫度、反應(yīng)物和主要生成物的摩爾分?jǐn)?shù)與344步詳細(xì)化學(xué)反應(yīng)機(jī)理計(jì)算結(jié)果整體變化趨勢(shì)吻合較好;預(yù)混燃燒器中62步簡(jiǎn)化機(jī)理得到的進(jìn)口反應(yīng)物和出口生成物摩爾分?jǐn)?shù)與詳細(xì)機(jī)理結(jié)果和試驗(yàn)數(shù)據(jù)稍有差異,但變化趨勢(shì)基本一致;62步簡(jiǎn)化機(jī)理能在較大范圍內(nèi)反映正癸烷的燃燒性能。2)獨(dú)立設(shè)計(jì)了本生燈預(yù)混預(yù)蒸發(fā)燃燒試驗(yàn)臺(tái),對(duì)RP-3型煤油預(yù)混預(yù)蒸發(fā)燃燒火焰進(jìn)行了試驗(yàn)測(cè)量,結(jié)果表明:本生燈預(yù)混預(yù)混蒸發(fā)火焰穩(wěn)定燃燒的油氣比大于0.0603;當(dāng)燈管內(nèi)流體雷諾數(shù)大于1150時(shí),層流火焰過(guò)度到湍流火焰;火焰焰心、內(nèi)焰、外焰高度可以均可通過(guò)CH4、UCH、CO2、溫度等的極值點(diǎn)位置來(lái)判斷;不同工況下的火焰中心軸線和不同高度截面徑向上溫度和煙氣組分濃度總體變化趨勢(shì)基本是相同的。3)以試驗(yàn)用的本生燈預(yù)混預(yù)蒸發(fā)燃燒火焰為數(shù)值模擬對(duì)象,建立數(shù)值模擬網(wǎng)格,采用三種航空煤油替代燃料及其多步簡(jiǎn)化化學(xué)反應(yīng)機(jī)理對(duì)本生燈預(yù)混預(yù)蒸發(fā)燃燒火焰進(jìn)行數(shù)值模擬,并和相應(yīng)的試驗(yàn)數(shù)據(jù)相比較。計(jì)算結(jié)果表明:標(biāo)準(zhǔn)k-e湍流模型和EDC燃燒模型能較好的描述本生燈燃燒火焰,可用于后續(xù)本生燈預(yù)混預(yù)蒸發(fā)燃燒火焰的研究;三種簡(jiǎn)化機(jī)理中心截面上流場(chǎng),以及中心截面和不同高度截面的溫度、O2濃度和CO2濃度分布基本相同;在各工況下,62步簡(jiǎn)化機(jī)理計(jì)算的火焰中心軸線和不同高度截面徑向上的溫度、O2濃度、CO2濃度和試驗(yàn)數(shù)據(jù)能很好的吻合,能對(duì)火焰溫度和煙氣組分進(jìn)行較準(zhǔn)確和可靠的預(yù)測(cè);23步簡(jiǎn)化機(jī)理在各工況下的計(jì)算結(jié)果和試驗(yàn)數(shù)據(jù)都相差很遠(yuǎn),因此C12H23的23步簡(jiǎn)化機(jī)理不能準(zhǔn)確的預(yù)測(cè)RP-3型煤油的預(yù)混預(yù)蒸發(fā)燃燒過(guò)程;38步簡(jiǎn)化機(jī)理在貧油時(shí)能對(duì)軸線溫度,在富油時(shí)對(duì)軸線O2做出一定預(yù)測(cè),但不能對(duì)CO2進(jìn)行準(zhǔn)確的預(yù)測(cè)。本文所提出的正癸烷62步簡(jiǎn)化機(jī)理能較準(zhǔn)確描述我國(guó)RP-3型煤油的實(shí)際燃燒過(guò)程,為發(fā)動(dòng)ii機(jī)燃燒室的數(shù)值模擬提供可靠的化學(xué)反應(yīng)機(jī)理計(jì)算模塊。
[Abstract]:In order to accurately predict the ignition and combustion characteristics of RP-3 type aviation kerosene, a reliable chemical reaction mechanism calculation module is provided for the numerical prediction of the two phase spray combustion process for the main combustion chamber of the active or next generation aero engine, the afterburner or the combustor of the scramjet combustor. In this paper, the RP-3 type aviation kerosene substitute fuel and its multistep process are used in this paper. The basic research of the mechanism of the reaction is carried out in this paper. The following three aspects are as follows: 1) determining the substitution of the RP-3 type kerosene as a substitute fuel and the detailed chemical reaction mechanism (62 components 344 steps), and the analysis of the combustion characteristics of the positive in combustor in the premixed burner, and the comparison and analysis of the experimental data. The results show that it can be used. As an alternative fuel for RP-3 type aviation kerosene, based on the sensitivity analysis and reaction flow analysis, the mechanism of the detailed chemical reaction of the positive subunit was simplified, and a 36 component 62 step simplified reaction mechanism was established and calculated in a complete stirred reactor and a premixed burner, and compared with the detailed mechanism results and the experimental data. The results show that the equilibrium temperature is calculated by the 62 step simplified mechanism in the complete stirred reactor. The mole fraction of the reactant and the main product is in good agreement with the overall change trend of the 344 step detailed chemical reaction mechanism. The molar fraction of the inlet reactant and the export product obtained by the 62 step simplification mechanism in the premixed burner and the details are detailed. The mechanism results are slightly different from the experimental data, but the change trend is basically the same. The 62 step simplification mechanism can reflect the combustion performance of the.2 in a larger range. The premixed premixed pre evaporative combustion test bench is designed independently and the premixed premixed combustion flame of RP-3 type kerosene is tested. The results show that the premixed premixed evaporation of the Benson lamp is made. The fuel gas ratio of the flame stable combustion is greater than 0.0603, and when the Reynolds number in the tube is more than 1150, the laminar flame is over to the turbulent flame, and the flame core, the inner flame and the outer flame can be judged by the extreme point position of CH4, UCH, CO2, temperature and so on; the center axis of the flame and the radial temperature and smoke at different height sections under different working conditions The overall variation trend of component concentration is basically the same.3). The numerical simulation grid is set up with the premixed pre evaporating combustion flame of the experimental Benson lamp as the numerical simulation object. The numerical simulation of the premixed premixed combustion flame of the Benson lamp is simulated with three kinds of aviation kerosene substitute fuel and its multi step simplified chemical reaction mechanism. The results show that the standard k-e turbulence model and the EDC combustion model can describe the burning flame of the Benson lamp well. It can be used for the subsequent study of pre mixed premixed combustion flame of the Benson lamp; the flow field on the central section of the three simplified mechanisms, the temperature of the central section and the different height section, the distribution of O2 concentration and the concentration of CO2 are basic. In the same condition, the 62 step simplified mechanism calculated the central axis of the flame and the temperature on the radial section of the different height, the concentration of O2, the concentration of CO2 and the experimental data can be in good agreement, and can make a more accurate and reliable prediction of the flame temperature and the smoke composition, and the difference between the calculation results and the experimental data of the 23 step simplification mechanism at various working conditions. So the 23 step simplification mechanism of C12H23 can not accurately predict the premixed premixed combustion process of RP-3 type kerosene; the 38 step simplification mechanism can make a certain prediction on the axis temperature and the axis O2 in the oil rich, but can not accurately predict the CO2. The 62 step simplification mechanism proposed in this paper can describe our country accurately. The actual combustion process of RP-3 kerosene provides reliable chemical reaction mechanism calculation module for the numerical simulation of II combustion chamber.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:V231.2;V312
【參考文獻(xiàn)】
相關(guān)期刊論文 前8條
1 曾文;陳瀟瀟;劉靜忱;馬洪安;陳英濤;;一種航空煤油數(shù)值模擬替代燃料的化學(xué)反應(yīng)簡(jiǎn)化機(jī)理[J];航空動(dòng)力學(xué)報(bào);2012年03期
2 王慧汝;金捷;王靜波;談寧馨;李象遠(yuǎn);;正癸烷燃燒機(jī)理及航空煤油點(diǎn)火延時(shí)動(dòng)力學(xué)模擬[J];高等學(xué);瘜W(xué)學(xué)報(bào);2012年02期
3 曾文;劉靜忱;陳瀟瀟;解茂昭;;正癸烷預(yù)混燃燒的詳細(xì)反應(yīng)動(dòng)力學(xué)數(shù)值模擬[J];航空動(dòng)力學(xué)報(bào);2011年10期
4 劉建文;熊生偉;馬雪松;;基于DRG和QSSA方法的煤油詳細(xì)燃燒機(jī)理簡(jiǎn)化[J];推進(jìn)技術(shù);2011年04期
5 王慧汝;金捷;柳楊;;采用詳細(xì)化學(xué)反應(yīng)機(jī)理的火焰面模型模擬煤油兩相燃燒流場(chǎng)[J];航空動(dòng)力學(xué)報(bào);2011年07期
6 肖保國(guó);楊順華;趙慧勇;錢(qián)煒祺;樂(lè)嘉陵;;RP-3航空煤油燃燒的詳細(xì)和簡(jiǎn)化化學(xué)動(dòng)力學(xué)模型[J];航空動(dòng)力學(xué)報(bào);2010年09期
7 范學(xué)軍;俞剛;;大慶RP-3航空煤油熱物性分析[J];推進(jìn)技術(shù);2006年02期
8 董剛,蔣勇,陳義良,王清安;大型氣相化學(xué)動(dòng)力學(xué)軟件包CHEMKIN及其在燃燒中的應(yīng)用[J];火災(zāi)科學(xué);2000年01期
相關(guān)博士學(xué)位論文 前1條
1 李大鵬;煤油雙模態(tài)沖壓發(fā)動(dòng)機(jī)燃燒室工作過(guò)程研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2006年
相關(guān)碩士學(xué)位論文 前2條
1 劉靜忱;航空煤油數(shù)值模擬替代燃料的反應(yīng)動(dòng)力學(xué)研究[D];沈陽(yáng)航空航天大學(xué);2013年
2 馬兵;汽車(chē)尾氣氮氧化物催化還原的數(shù)值模擬研究[D];大連理工大學(xué);2010年
,本文編號(hào):1888232
本文鏈接:http://sikaile.net/kejilunwen/hangkongsky/1888232.html