微型四旋翼無人飛行器的自主起降與安全飛行研究
本文選題:微型四旋翼無人飛行器 + 電力設(shè)備巡檢。 參考:《華北電力大學(xué)》2015年碩士論文
【摘要】:微型四旋翼無人飛行器的氣動(dòng)結(jié)構(gòu)簡單,易于控制,成本低廉,其眾多的優(yōu)點(diǎn)使其已經(jīng)越來越多得被應(yīng)用于各種工業(yè)領(lǐng)域之中,例如軍事偵察、邊境巡檢、工業(yè)設(shè)備巡檢等。特別是在野外電塔和架空線路的巡檢中,傳統(tǒng)巡檢方法需要人工駕駛直升飛機(jī)對(duì)線路進(jìn)行巡檢,成本高,受自然條件因素影響較大,同時(shí)巡檢的效率偏低。微型四旋翼無人飛行器克服了傳統(tǒng)有人駕駛飛行器的缺點(diǎn),可以極大得提高巡檢的效率,降低巡檢的成本,其已經(jīng)被越來越多得應(yīng)用于電力設(shè)備(電塔、架空線路和絕緣子)的巡檢中,成為了該領(lǐng)域的研究熱點(diǎn)。本文主要研究微型四旋翼無人飛行器在電力設(shè)備(電塔、架空線路和絕緣子)巡檢中的應(yīng)用,如何控制微型四旋翼無人飛行器自主并且安全得完成一個(gè)巡檢任務(wù)周期,即自主起飛、自主安全飛行和自主降落的全過程。本文通過對(duì)微型四旋翼無人飛行器進(jìn)行數(shù)學(xué)建模,并且改進(jìn)了傳統(tǒng)的微型四旋翼飛行器的PID控制器,設(shè)計(jì)了一個(gè)兩級(jí)PID控制器,對(duì)飛行器的空間位置的位移和速度,空間姿態(tài)的角位移和角速度進(jìn)行了兩級(jí)反饋控制,增強(qiáng)了控制系統(tǒng)的穩(wěn)定性。并且,在此基礎(chǔ)上完成了對(duì)飛行器的自主起飛和自主降落的功能設(shè)計(jì)。由于微型四旋翼無人飛行器的體積小,重量輕,在對(duì)電塔和線路進(jìn)行巡檢時(shí)容易受到陣風(fēng)的影響,再加之導(dǎo)航傳感器的誤差,容易導(dǎo)致飛行器在巡檢過程中與電塔和線路發(fā)生碰撞,造成安全事故。為了解決此問題,本文提出了一種安全飛行方法,該方法首先根據(jù)飛行器自身的參數(shù)和巡檢的環(huán)境參數(shù),構(gòu)建了一個(gè)安全距離公式,再利用線性擬合算法擬合電塔的分布曲線,結(jié)合本文提出的安全距離公式平移曲線構(gòu)建一個(gè)禁飛區(qū)域,即飛行器在自主巡檢過程中不能進(jìn)入該區(qū)域。其次,本文建立了一個(gè)陣風(fēng)概率公式,實(shí)時(shí)評(píng)估環(huán)境陣風(fēng)對(duì)于飛行器巡檢的影響,通過將陣風(fēng)概率公式與人工勢(shì)場法相結(jié)合,實(shí)時(shí)評(píng)估陣風(fēng)對(duì)飛行器的影響,并結(jié)合之前建立的禁飛區(qū),規(guī)劃巡檢飛行路線,避免飛行器與電力設(shè)備發(fā)生碰撞,增強(qiáng)了巡檢的魯棒性。最后,本文自行搭建了一個(gè)微型四旋翼無人飛行器平臺(tái),設(shè)計(jì)了飛行控制器和飛行控制軟件系統(tǒng),設(shè)計(jì)了通訊協(xié)議,并編寫了飛行控制軟件,包含PID控制器模塊、通訊協(xié)議模塊、安全飛行模塊、自主起飛和自主降落模塊等,完成了飛行器從一個(gè)航點(diǎn)自主起飛,利用安全飛行方法自主完成整個(gè)巡檢路徑的飛行,同時(shí)在終點(diǎn)自主降落的巡檢過程。
[Abstract]:The micro four-rotor unmanned aerial vehicle (UAV) has many advantages such as simple aerodynamic structure, easy control and low cost. It has been widely used in various industrial fields, such as military reconnaissance, border inspection, industrial equipment inspection and so on. Especially in the field electric tower and overhead line inspection, the traditional inspection method needs manual helicopter to patrol the line, the cost is high, affected by the natural conditions, and the efficiency of the inspection is on the low side. The micro four-rotor unmanned aerial vehicle overcomes the shortcoming of the traditional manned aerial vehicle and can greatly improve the efficiency of the inspection and reduce the cost of the inspection. It has been used more and more in power equipment (electric tower, etc.) The inspection of overhead lines and insulators has become a research hotspot in this field. This paper mainly studies the application of micro four rotor unmanned aerial vehicle in power equipment (electric tower, overhead line and insulator), how to control the micro four rotor unmanned aerial vehicle to complete a patrol task cycle safely. The whole process of autonomous take-off, autonomous safe flight and autonomous landing. In this paper, a two-stage PID controller is designed for the displacement and velocity of the space position of the micro four-rotor unmanned aerial vehicle (UAV) by mathematical modeling, and the traditional PID controller is improved. The angular displacement and angular velocity of space attitude are controlled by two-stage feedback, which enhances the stability of the control system. On this basis, the functional design of the autonomous take-off and landing of the aircraft is completed. Because of the small size and light weight of the micro four-rotor unmanned aerial vehicle, it is easy to be affected by the gusts during the inspection of the electric tower and the circuit, and the error of the navigation sensor. It is easy to lead to collision with electric tower and line during the inspection and inspection process, resulting in safety accident. In order to solve this problem, a safe flight method is proposed in this paper. Firstly, a safe distance formula is constructed according to the parameters of the vehicle itself and the environment parameters of the patrol, and then the distribution curve of the electric tower is fitted by the linear fitting algorithm. Based on the translation curve of the safe distance formula proposed in this paper, a no-fly region is constructed, that is, the aircraft cannot enter the region during the autonomous inspection. Secondly, a probability formula of gust is established to evaluate the effect of environmental gust on aircraft inspection in real time. By combining the formula of gust probability with the method of artificial potential field, the effect of gust on aircraft is evaluated in real time. Combined with the established no-fly zone, the cruise flight route is planned to avoid collision between aircraft and power equipment, and the robustness of patrol inspection is enhanced. Finally, a micro four-rotor unmanned aerial vehicle platform is built, flight controller and flight control software system are designed, communication protocol is designed, and flight control software, including PID controller module, is written. The communication protocol module, the safety flight module, the autonomous take-off and autonomous landing module, etc., have completed the autonomous take-off of the aircraft from a single flight point, and the use of safe flight methods to independently complete the flight of the entire patrol path. At the same time at the end of the independent landing of the inspection process.
【學(xué)位授予單位】:華北電力大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:V279;V32
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陸洋;李建波;朱清華;;自轉(zhuǎn)旋翼機(jī)配平及操縱響應(yīng)特性[J];南京航空航天大學(xué)學(xué)報(bào);2008年05期
2 申斌;吳一波;林冬生;;旋翼機(jī)的發(fā)展與應(yīng)用[J];科技傳播;2013年23期
3 小草;;新概念旋翼機(jī)復(fù)蘇[J];直升機(jī)技術(shù);2000年03期
4 蔡;;自轉(zhuǎn)旋翼機(jī)注視通用市場[J];直升機(jī)技術(shù);2001年03期
5 陳麗;龔振邦;劉亮;;超小型旋翼機(jī)系統(tǒng)的輸出跟蹤控制器設(shè)計(jì)[J];系統(tǒng)仿真學(xué)報(bào);2006年02期
6 朱清華;李建波;倪先平;張呈林;;旋翼機(jī)總體設(shè)計(jì)的幾個(gè)問題[J];航空科學(xué)技術(shù);2006年05期
7 朱清華;李建波;倪先平;張呈林;;可跳飛自轉(zhuǎn)旋翼飛行器推/升力系統(tǒng)參數(shù)優(yōu)化[J];航空動(dòng)力學(xué)報(bào);2008年01期
8 王偉;;“比目魚”橫列雙旋翼式無人偵察攻擊機(jī)[J];現(xiàn)代兵器;2008年01期
9 Graham Warwick;孫立;;可變形旋翼技術(shù)[J];航空維修與工程;2010年01期
10 張廣林;李昊;;未來旋翼機(jī)技術(shù)展望[J];國際航空;2010年05期
相關(guān)會(huì)議論文 前3條
1 唐正飛;;旋翼飛行器及其系統(tǒng)發(fā)展研究[A];航空科學(xué)技術(shù)學(xué)科發(fā)展報(bào)告(2010-2011)[C];2011年
2 章洪;;新概念“直升旋翼機(jī)”[A];第六屆中國科學(xué)家論壇論文匯編[C];2007年
3 ;旋翼無人機(jī)參賽報(bào)告[A];2004中國空中機(jī)器人大賽論文匯編[C];2004年
相關(guān)重要報(bào)紙文章 前10條
1 張廣林 張慧;世界旋翼機(jī)市場預(yù)測(cè)及產(chǎn)業(yè)發(fā)展的經(jīng)驗(yàn)和啟示[N];中國航空?qǐng)?bào);2008年
2 李昊;美陸軍將啟動(dòng)高速旋翼機(jī)研制項(xiàng)目[N];中國航空?qǐng)?bào);2011年
3 本報(bào)記者 胡海波;自轉(zhuǎn)旋翼機(jī):會(huì)飛的“風(fēng)車”[N];中國民航報(bào);2011年
4 高翔;美陸軍基于亞太戰(zhàn)略評(píng)估其旋翼機(jī)計(jì)劃[N];中國航空?qǐng)?bào);2012年
5 黎時(shí);1923:旋翼機(jī)問世[N];中國航空?qǐng)?bào);2003年
6 姜曙光;未來十年生產(chǎn)5448架軍用旋翼機(jī)[N];中國航空?qǐng)?bào);2004年
7 姜曙光;蒂爾預(yù)測(cè)未來十年旋翼機(jī)市場[N];中國航空?qǐng)?bào);2004年
8 王蘭;輕型軍用旋翼機(jī)市場將步入緊縮期[N];中國航空?qǐng)?bào);2011年
9 記者 劉軍國;日本 美將如期部署“魚鷹”旋翼機(jī)[N];人民日?qǐng)?bào);2012年
10 李昊;美國開展下一代高速旋翼機(jī)技術(shù)預(yù)研項(xiàng)目[N];中國航空?qǐng)?bào);2014年
,本文編號(hào):1870672
本文鏈接:http://sikaile.net/kejilunwen/hangkongsky/1870672.html