飛機油箱攪拌摩擦焊縫超聲特征成像方法研究
本文選題:無損檢測 + 特征成像 ; 參考:《南昌航空大學》2016年碩士論文
【摘要】:飛機油箱是飛機的源力系統(tǒng),其主要任務(wù)是貯存燃油并為發(fā)動機供應(yīng)燃料,確保發(fā)動機在飛行過程中的穩(wěn)定性。目前,飛機油箱蒙皮焊接主要采用攪拌摩擦焊技術(shù),該技術(shù)具有優(yōu)質(zhì)、高效、低耗、變形小、無污染等優(yōu)點,廣泛應(yīng)用于薄板焊接技術(shù)領(lǐng)域。在飛機油箱蒙皮的焊接過程中,由于人為選擇焊接工藝參數(shù)不當及環(huán)境因素影響[34],焊縫內(nèi)會出現(xiàn)緊貼、細小和取向復雜的缺陷,這些缺陷往往會造成母材間的脫落和漏油的安全隱患,給國家財產(chǎn)帶來巨大損失。無損檢測是一種有效的質(zhì)量評價手段,可以幫助企業(yè)篩選出合格的飛機油箱,進而提高飛機油箱在使用過程中的安全性和可靠性。課題針對飛機油箱焊縫中的常見缺陷問題,在傳統(tǒng)飛機油箱焊縫手動超聲檢測的基礎(chǔ)上,結(jié)合自動化檢測技術(shù),研制出多探頭多角度的超聲特征成像檢測系統(tǒng)。系統(tǒng)對多通道的超聲全波列檢測信號進行分析和處理,以缺陷信號的回波幅值和相位信息為特征參量進行超聲特征成像,以直觀的圖像形式顯現(xiàn)出缺陷的位置和大小。通過設(shè)計高精度的機電控制系統(tǒng),確保機械傳動精度優(yōu)于0.2mm;系統(tǒng)適用于焊縫內(nèi)緊貼、細小和取向復雜的缺陷檢測。對于緊貼型缺陷,系統(tǒng)可以檢測出距焊縫表面0.1mm內(nèi)的緊貼型缺陷。對于細小、取向復雜的缺陷,系統(tǒng)可以檢測出壁厚0.3mm的縱向缺陷;實驗中采用橫波和縱波聯(lián)合檢測方式,超聲波從不同角度對同一缺陷進行檢測,杜絕了缺陷的漏檢和誤判,同時提高靈敏度和分辨率。檢測完成之后,可以回調(diào)歷史檢測記錄,供檢測人員對有異議的檢測結(jié)果重新審閱。論文主要介紹飛機油箱焊縫超聲特征成像檢測系統(tǒng)的檢測原理、特點和方法,并基于油箱焊縫檢測要求設(shè)計相應(yīng)的探頭組支架和機電控制系統(tǒng),完成飛機油箱焊縫的自動化檢測控制。制作帶有人工缺陷的標準試樣,獲得特征圖像,驗證了系統(tǒng)的檢測能力和檢測精度等。
[Abstract]:The main task of the aircraft fuel tank is to store fuel and supply fuel to the engine to ensure the stability of the engine during flight. At present, friction stir welding (FSW) technology is mainly used in aircraft fuel tank skin welding, which has the advantages of high quality, high efficiency, low consumption, low deformation, no pollution and so on, so it is widely used in the field of thin plate welding. In the welding process of aircraft fuel tank skin, due to the improper selection of welding process parameters and the influence of environmental factors [34], there will be defects in the weld seam, which are tight, fine and complex orientation. These defects often lead to the loss of base materials and oil spills, resulting in huge losses to national property. Non-destructive testing (NDT) is an effective means of quality evaluation, which can help enterprises to screen out qualified aircraft fuel tanks and improve the safety and reliability of aircraft fuel tanks in the process of operation. Aiming at the common defects in the welding seam of aircraft fuel tank, a multi-probe and multi-angle ultrasonic characteristic imaging detection system is developed on the basis of traditional ultrasonic inspection of aircraft fuel tank welding seam and automatic detection technology. The multi-channel ultrasonic full-wave train detection signal is analyzed and processed. The echo amplitude and phase information of the defect signal are taken as the characteristic parameters for ultrasonic feature imaging. The position and size of the defect are displayed in the form of visual image. The high precision electromechanical control system is designed to ensure the accuracy of mechanical transmission is better than 0.2 mm. The system is suitable for the defect detection of tight, fine and complex orientation inside the weld. For the fastening type defect, the system can detect the fastening type defect in the 0.1mm from the weld surface. The longitudinal defect of 0.3mm with wall thickness can be detected by the system for the small and complex orientation. In the experiment, the same defect is detected from different angles by ultrasonic wave combined with S-wave and P-wave, and the missing detection and misjudgment of the defect are eliminated. At the same time, the sensitivity and resolution are improved. Upon completion of the test, the history of the test can be callback for reexamination of dissenting test results. This paper mainly introduces the detection principle, characteristics and methods of ultrasonic characteristic imaging detection system for aircraft fuel tank weld seam, and designs the corresponding probe support and electromechanical control system based on the inspection requirements of oil tank weld seam. Complete the automatic inspection and control of the welding seam of the aircraft fuel tank. The standard samples with artificial defects are made and the feature images are obtained. The detection ability and accuracy of the system are verified.
【學位授予單位】:南昌航空大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:V228.11
【相似文獻】
相關(guān)期刊論文 前10條
1 葉休乃;飛機油箱的晃動或晃振試驗問題綜述[J];航空標準化與質(zhì)量;1986年01期
2 吳玉軍;;飛機油箱的微生物腐蝕及防護[J];中國民用航空;2006年11期
3 吳玉軍;隆小慶;;飛機油箱維護與安全[J];中國民用航空;2007年05期
4 方山;祝世興;李濤;;線性規(guī)劃在老齡飛機油箱檢查中的應(yīng)用[J];航空維修與工程;2010年03期
5 徐峰;;淺談飛機油箱滲漏的檢查與排除[J];江蘇航空;2010年02期
6 陳文;加強維修人員的自我防護──飛機油箱維修中的安全技術(shù)[J];國際航空;1999年02期
7 田宏,王旭,高永庭;飛機油箱的防火抑爆泡沫充填材料[J];國際航空;1999年02期
8 楊朋濤;牛量;蔣軍昌;;基于飛機油箱模型形狀特征的油量測量切片步長選擇方法研究[J];航空學報;2008年03期
9 吳曉男;唐大全;盧建華;;測量飛機油箱油量方法的研究[J];儀表技術(shù)與傳感器;2010年10期
10 肖統(tǒng)超;陳文;王紹慧;楊華楠;;不同破片殺傷元對飛機油箱的毀傷試驗[J];四川兵工學報;2010年12期
相關(guān)碩士學位論文 前4條
1 劉華龍;飛機油箱攪拌摩擦焊縫超聲特征成像方法研究[D];南昌航空大學;2016年
2 黃愉太;飛機油箱晃動流固耦合動力學研究[D];華南理工大學;2015年
3 段福寬;計算機輔助飛機油量分析[D];南京航空航天大學;2004年
4 冷飛;基于SPH方法的飛機油箱燃油晃蕩研究[D];南京航空航天大學;2009年
,本文編號:1858699
本文鏈接:http://sikaile.net/kejilunwen/hangkongsky/1858699.html