基于動(dòng)態(tài)故障樹(shù)的衛(wèi)星姿態(tài)控制系統(tǒng)壽命預(yù)測(cè)方法研究
本文選題:系統(tǒng)壽命預(yù)測(cè) + 動(dòng)態(tài)故障樹(shù); 參考:《南京航空航天大學(xué)》2016年碩士論文
【摘要】:伴隨長(zhǎng)壽命、高可靠性航天器的發(fā)展需求,衛(wèi)星的壽命預(yù)測(cè)研究成為當(dāng)前研究熱點(diǎn)。本文針對(duì)衛(wèi)星姿態(tài)控制系統(tǒng)及其關(guān)鍵部件開(kāi)展剩余壽命預(yù)測(cè)研究,建立了基于動(dòng)態(tài)故障樹(shù)的系統(tǒng)失效機(jī)理模型;以關(guān)鍵部件動(dòng)量輪為例,研究了部件帶工作狀態(tài)切換下的壽命預(yù)測(cè)方法;針對(duì)備份部件失效概率密度描述問(wèn)題,提出了改進(jìn)的備份部件失效概率密度描述方法;重點(diǎn)研究了系統(tǒng)配置及工作模式與系統(tǒng)在軌剩余壽命的關(guān)系。以多配置下的動(dòng)量輪系統(tǒng)為例,對(duì)不同配置、不同工作模式下系統(tǒng)的壽命預(yù)測(cè)技術(shù)進(jìn)行了仿真驗(yàn)證。首先,通過(guò)對(duì)衛(wèi)星姿態(tài)控制系統(tǒng)進(jìn)行失效工作機(jī)理分析,以動(dòng)態(tài)故障樹(shù)作為載體建立衛(wèi)星姿態(tài)控制系統(tǒng)的失效機(jī)理模型。為了降低建模復(fù)雜度,采用自頂向下的方法依次對(duì)衛(wèi)星姿態(tài)控制系統(tǒng)中的子系統(tǒng)進(jìn)行失效機(jī)理分析與建模,進(jìn)而得到衛(wèi)星姿態(tài)控制系統(tǒng)的失效模型。其次,研究了部件帶工作狀態(tài)切換下的壽命預(yù)測(cè)方法?紤]到基于動(dòng)態(tài)故障樹(shù)模型開(kāi)展衛(wèi)星姿態(tài)控制系統(tǒng)壽命預(yù)測(cè)時(shí),需要已知部件(底事件)的失效概率密度函數(shù),且部件在工程應(yīng)用中存在多個(gè)工況。因此,以動(dòng)量輪為例,在多個(gè)單一工作狀態(tài)下失效概率密度函數(shù)已知的條件下,結(jié)合Nelson假設(shè)(部件的殘存壽命僅依賴(lài)于已累積的失效和當(dāng)前應(yīng)力,而與累積方式無(wú)關(guān))提出了部件帶工作狀態(tài)切換下的壽命預(yù)測(cè)方法,并以動(dòng)量輪為例開(kāi)展了數(shù)值仿真驗(yàn)證。再次,研究了系統(tǒng)不同配置下的壽命預(yù)測(cè)。為實(shí)現(xiàn)基于動(dòng)態(tài)故障樹(shù)的系統(tǒng)壽命預(yù)測(cè)分析,需要對(duì)其進(jìn)行求解(即:頂事件失效概率密度函數(shù)的求解),但動(dòng)態(tài)故障樹(shù)模型規(guī)模比較大,直接求解比較困難,為了降低求解的復(fù)雜度,本文采用模塊化的方法進(jìn)行求解,靜態(tài)模塊和動(dòng)態(tài)模塊分別采用基于二元決策圖(BDD)和離散時(shí)間貝葉斯網(wǎng)絡(luò)(DTBN)的方法進(jìn)行求解。在動(dòng)態(tài)模塊求解過(guò)程中,針對(duì)現(xiàn)有備份門(mén)的求解方法中存在的備份部件失效概率密度累積和不等于1的問(wèn)題,提出了改進(jìn)的備份部件失效概率密度描述方法,有效地解決了失效概率密度累積和問(wèn)題。并將該改進(jìn)方法應(yīng)用于基于動(dòng)態(tài)故障樹(shù)的衛(wèi)星姿態(tài)控制系統(tǒng)失效機(jī)理模型求解,實(shí)現(xiàn)了系統(tǒng)不同配置下的壽命預(yù)測(cè),并以多種配置下的動(dòng)量輪子系統(tǒng)為案例開(kāi)展了數(shù)值仿真驗(yàn)證。最后,研究了系統(tǒng)不同工作模式下的壽命預(yù)測(cè)。通過(guò)分析系統(tǒng)工作模式下相關(guān)部件的工作狀態(tài)及切換情形,在部件帶工作狀態(tài)切換下壽命預(yù)測(cè)方法的基礎(chǔ)上,開(kāi)展了基于動(dòng)態(tài)故障樹(shù)模型的系統(tǒng)不同工作模式下的壽命預(yù)測(cè)研究,并以四斜裝的動(dòng)量輪子系統(tǒng)為案例開(kāi)展了數(shù)值仿真驗(yàn)證。
[Abstract]:With the development of long life and high reliability spacecraft, the research of satellite life prediction has become a hot topic. In this paper, the residual life prediction of satellite attitude control system and its key components are studied, and the failure mechanism model of the system based on dynamic fault tree is established, and the momentum wheel of the key component is taken as an example. In this paper, the method of predicting the life of parts with working state switching is studied, and an improved method for describing the failure probability density of backup components is proposed. The relationship between system configuration, working mode and system residual life in orbit is studied. Taking the momentum wheel system with multiple configurations as an example, the life prediction technology of the system with different configurations and different working modes is simulated and verified. Firstly, by analyzing the failure mechanism of satellite attitude control system, the failure mechanism model of satellite attitude control system is established with dynamic fault tree as the carrier. In order to reduce the modeling complexity, the failure mechanism of the satellite attitude control system is analyzed and modeled by top-down method, and the failure model of the satellite attitude control system is obtained. Secondly, the method of life prediction is studied. In order to predict the life of satellite attitude control system based on dynamic fault tree model, the failure probability density function of known components (bottom events) is required, and there are many working conditions in engineering applications. Therefore, taking the momentum wheel as an example, under the condition that the failure probability density function is known in several single working states, combined with the Nelson hypothesis, the residual life of the component depends only on the accumulated failure and the current stress. A method for predicting the life of components with switching state is proposed, and the numerical simulation of momentum wheel is carried out. Thirdly, the life prediction of different configurations of the system is studied. In order to realize the system life prediction and analysis based on dynamic fault tree, it is necessary to solve it (that is, solving the probability density function of top event failure), but the dynamic fault tree model is large in scale and difficult to solve directly. In order to reduce the complexity of the solution, the method of modularization is adopted in this paper. The static module and the dynamic module are solved by the methods based on binary decision graph (BDD) and discrete time Bayesian network (DTBN), respectively. In the process of dynamic module solving, an improved method for describing the failure probability density of backup components is proposed to solve the problem that the cumulative sum of failure probability density of backup components is not equal to 1. The problem of accumulation of failure probability density is solved effectively. The improved method is applied to solve the failure mechanism model of satellite attitude control system based on dynamic fault tree. The numerical simulation of momentum wheel system with various configurations is carried out. Finally, the life prediction of the system under different working modes is studied. Based on the analysis of the working state and switching situation of the relevant parts in the system, the method of predicting the life of the components with working state switching is presented. Based on the dynamic fault tree model, the life prediction of the system under different working modes is studied, and the numerical simulation is carried out with the momentum wheel system with four oblique loads as an example.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:V448.22
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉勝南;陸寧云;程月華;姜斌;邢琰;;基于多退化量的動(dòng)量輪剩余壽命預(yù)測(cè)方法[J];南京航空航天大學(xué)學(xué)報(bào);2015年03期
2 周斌;黃元亮;黃威;;基于模塊化分解的故障樹(shù)分析方法[J];計(jì)算機(jī)工程;2015年02期
3 祁海銘;程月華;姜斌;陸寧云;邢琰;;基于多狀態(tài)故障的衛(wèi)星姿態(tài)控制系統(tǒng)剩余壽命預(yù)測(cè)方法[J];南京航空航天大學(xué)學(xué)報(bào);2015年01期
4 龐景月;馬云彤;劉大同;彭宇;;鋰離子電池剩余壽命間接預(yù)測(cè)方法[J];中國(guó)科技論文;2014年01期
5 卓紅艷;金曉;孟凡寶;劉志強(qiáng);李旭;;一種系統(tǒng)壽命分析評(píng)估方法[J];工業(yè)控制計(jì)算機(jī);2013年07期
6 高巍;張琴芳;;基于二叉決策圖的故障樹(shù)求解法[J];核技術(shù);2011年10期
7 張小麗;陳雪峰;李兵;何正嘉;;機(jī)械重大裝備壽命預(yù)測(cè)綜述[J];機(jī)械工程學(xué)報(bào);2011年11期
8 厲海濤;金光;周經(jīng)倫;周忠寶;吳春華;;動(dòng)量輪維納過(guò)程退化建模與壽命預(yù)測(cè)[J];航空動(dòng)力學(xué)報(bào);2011年03期
9 邊志強(qiáng);程衛(wèi)強(qiáng);薛孝補(bǔ);于永江;;基于陀螺和星敏感器的衛(wèi)星姿態(tài)確定算法[J];航天器工程;2011年02期
10 孫文迪;陳滿(mǎn)儒;;基于可靠性理論的風(fēng)電機(jī)組偏航軸承壽命預(yù)測(cè)[J];制造業(yè)自動(dòng)化;2011年05期
相關(guān)碩士學(xué)位論文 前1條
1 武炳潔;衛(wèi)星動(dòng)量輪退化過(guò)程建模與分析技術(shù)[D];國(guó)防科學(xué)技術(shù)大學(xué);2009年
,本文編號(hào):1855146
本文鏈接:http://sikaile.net/kejilunwen/hangkongsky/1855146.html