基于DFP系統(tǒng)的三剛體航天器快速機動技術(shù)研究
本文選題:DFP系統(tǒng) + 多剛體航天器 ; 參考:《哈爾濱工業(yè)大學(xué)》2016年碩士論文
【摘要】:無擾有效載荷(disturbance-free payload,簡稱DFP)系統(tǒng)是一種雙剛體航天器,由載荷模塊和支持模塊組成,二者通過無接觸執(zhí)行器連接,具有極佳的隔振性。為提高DFP系統(tǒng)的敏捷性,本文引入了連接模塊和球鉸,將雙剛體DFP系統(tǒng)改進為三剛體DFP系統(tǒng)。作為快速機動技術(shù)研究的基礎(chǔ),本文使用牛頓歐拉法建立了三剛體航天器的姿態(tài)動力學(xué)模型。在建模過程中,本文分別推導(dǎo)了六腳構(gòu)型的無接觸執(zhí)行器產(chǎn)生的力和力矩的表達式,三個模塊的姿態(tài)動力學(xué)方程,以及載荷模塊與連接模塊的相對運動方程。最終,完整的姿態(tài)動力學(xué)模型為一個12自由度的矩陣方程,該模型具有強耦合性和強非線性。為降低飛輪能力對機動速度的限制,本文對三剛體航天器的系統(tǒng)角動量進行了分析,設(shè)計出了支持模塊的內(nèi)部運動參考軌跡,使得支持模塊的運動夠吸收載荷模塊和連接模塊的角動量變化。對于轉(zhuǎn)動慣量存在不確定性的情況,該機動策略仍然適用。運用該機動策略,使用普通飛輪即可實現(xiàn)快速機動。當(dāng)轉(zhuǎn)動慣量存在不確定性時,傳統(tǒng)遞階飽和控制器會出現(xiàn)超調(diào),延長機動時間。為了提高控制器對轉(zhuǎn)動慣量不確定的魯棒性,本文對傳統(tǒng)遞階飽和控制器進行了改進,在減速階段增加了角加速度補償項,顯著降低了超調(diào)。針對加速度信息無法測量得到的問題,本文通過對控制模型進行變換,得到了無需加速度信息但仍有加速度前饋功能的控制器。此外,針對三剛體航天器具有多種執(zhí)行機構(gòu)約束的問題,本文給出了適用于三剛體航天器的控制器參數(shù)選取方法。若有效載荷需機動的角度較大,在內(nèi)部運動機動過程中,連接模塊與支持模塊很可能發(fā)生碰撞。為解決碰撞問題,本文針對三剛體航天器這一特殊構(gòu)型給出了碰撞約束條件,并給出了兩種避免碰撞的機動策略。第一種機動策略為分段機動,當(dāng)連接模塊與支持模塊即將發(fā)生碰撞時,將球鉸鎖死,再繼續(xù)完成機動。然而,球鉸的鎖死可能會引入未知干擾,因此本文提出了參數(shù)自調(diào)整機動策略,將支持模塊的參考軌跡改進為參數(shù)自調(diào)整軌跡,改進的參考軌跡可隨兩模塊相對姿態(tài)的變化而自動調(diào)整,無需鎖死球鉸即可避免碰撞。
[Abstract]:The disturbance-free payload (DFP) system is a dual rigid body spacecraft, consisting of a load module and a support module. The two is connected by a non contact actuator and has excellent vibration isolation. In order to improve the agility of the DFP system, the connection module and the ball hinge are introduced in this paper, and the dual rigid body DFP system is improved to three rigid DFP. As a basis for the research of fast maneuver technology, this paper uses Newton Euler method to establish the attitude dynamics model of three rigid spacecraft. In the process of modeling, the expression of force and torque produced by the non contact actuator of the six foot configuration, the attitude dynamics equation of the three modules, and the load module and connection are derived. In the end, the complete attitude dynamics model is a matrix equation with 12 degrees of freedom. The model has strong coupling and strong nonlinearity. In order to reduce the limitation of the speed of the flywheel, the angular momentum of the three rigid spacecraft is analyzed, and the internal motion reference rail for the support module is designed. The motion of the support module is enough to absorb the angular momentum of the load module and the connection module. The maneuver strategy is still applicable to the uncertainty of the moment of inertia. The use of this maneuver strategy can be used for rapid maneuver. When the moment of inertia is uncertain, the traditional hierarchical saturation controller will appear. In order to improve the robustness of the controller to the uncertainty of the moment of inertia, this paper improves the traditional hierarchical saturation controller, increases the angular acceleration compensation term in the deceleration stage, and significantly reduces the overshoot. In this paper, the control model is transformed to obtain the problem that the acceleration information can not be measured. In addition, for the three rigid spacecraft with multiple actuator constraints, a controller parameter selection method suitable for three rigid spacecraft is given in this paper. If the payload needs to be maneuverable, the connection module and the connection module can be used in the internal motion maneuver. The support module is likely to collide. In order to solve the collision problem, this paper gives the collision constraint conditions for the special configuration of the three rigid spacecraft, and gives two Maneuver Strategies to avoid collision. The first maneuver strategy is piecewise maneuver, when the connection module and support module will collide, the ball hinge is locked and then continued to complete. However, the lock death of the ball hinge may introduce unknown interference. Therefore, this paper proposes a parameter self-adjusting maneuver strategy, which improves the reference trajectory of the support module to the self tuning path of the parameter. The improved reference trajectory can be automatically adjusted with the change of the relative attitude of the two module, and the collision can be avoided without the need of the lock dead hinges.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:V448.2
【相似文獻】
相關(guān)期刊論文 前10條
1 石永輝;;96坦克快速機動[J];兵器知識;2013年10期
2 關(guān)軼峰,李鐵壽,王典軍;航天器附件大角度快速機動的一種控制方法[J];中國空間科學(xué)技術(shù);2004年04期
3 陳長青,茍興宇;帶快速大角度機動附件的衛(wèi)星在俯仰平面內(nèi)的運動控制與穩(wěn)定性研究[J];航天控制;2005年02期
4 靳瑾;張景瑞;劉藻珍;;航天器大角度姿態(tài)快速機動控制器參數(shù)優(yōu)化設(shè)計[J];清華大學(xué)學(xué)報(自然科學(xué)版);2009年02期
5 陳磊;沈少萍;;太陽同步衛(wèi)星四元數(shù)模型快速機動控制[J];科技致富向?qū)?2013年17期
6 雷擁軍;談樹萍;劉一武;;一種航天器姿態(tài)快速機動及穩(wěn)定控制方法[J];中國空間科學(xué)技術(shù);2010年05期
7 張國琪;丁建釗;;柔性航天器姿態(tài)快速機動的自適應(yīng)控制方法[J];空間控制技術(shù)與應(yīng)用;2008年04期
8 饒衛(wèi)東;;基于特征模型的撓性航天器姿態(tài)快速機動研究[J];空間控制技術(shù)與應(yīng)用;2009年03期
9 孟憲偉;復(fù)雜地形下物體快速機動行進的原理與方法[J];機械設(shè)計;1999年04期
10 饒衛(wèi)東;徐李佳;;單軸撓性衛(wèi)星快速機動試驗臺[J];空間控制技術(shù)與應(yīng)用;2011年05期
相關(guān)會議論文 前5條
1 李智斌;李勇;李果;;變參數(shù)航天器高性能快速機動的若干問題[A];2005年中國智能自動化會議論文集[C];2005年
2 唐強;王巖;陳興林;;撓性航天器快速機動輸出反饋控制[A];2011年中國智能自動化學(xué)術(shù)會議論文集(第一分冊)[C];2011年
3 潘立鑫;;高分辨率遙感衛(wèi)星快速機動及穩(wěn)定控制技術(shù)研究[A];中國空間科學(xué)學(xué)會空間探測專業(yè)委員會第二十六屆全國空間探測學(xué)術(shù)研討會會議論文集[C];2013年
4 呂文龍;;轉(zhuǎn)變傳統(tǒng)觀念,開辟快速機動保障新途徑[A];航空裝備保障技術(shù)及發(fā)展——航空裝備保障技術(shù)專題研討會論文集[C];2006年
5 陸利民;;某雷達快速機動平臺的研究與設(shè)計[A];2008年電子機械與微波結(jié)構(gòu)工藝學(xué)術(shù)會議論文集[C];2008年
相關(guān)重要報紙文章 前10條
1 李U、特约細J嚀錛晤,
本文編號:1853357
本文鏈接:http://sikaile.net/kejilunwen/hangkongsky/1853357.html