空間光學(xué)遙感器寬視場(chǎng)波前誤差在軌檢測(cè)方法
本文選題:光學(xué)遙感 切入點(diǎn):波前傳感 出處:《北京理工大學(xué)》2015年碩士論文
【摘要】:近年來(lái),隨著高分辨率空間光學(xué)遙感器的發(fā)展,遙感器口徑越來(lái)越大。由于長(zhǎng)焦距、輕量化、可折疊等特性以及空間在軌環(huán)境的特殊性,成像質(zhì)量受到多種潛在因素的影響,導(dǎo)致圖像分辨率降低。對(duì)于像質(zhì)下降的問(wèn)題,一般有兩種解決方法,一是利用比較復(fù)雜的自適應(yīng)光學(xué)技術(shù),另一種方法是僅采用自適應(yīng)光學(xué)中的波前傳感技術(shù)進(jìn)行出瞳波像差的在軌檢測(cè),然后通過(guò)離線圖像復(fù)原技術(shù)恢復(fù)圖像。 空間相機(jī)的視場(chǎng)較寬,不同視場(chǎng)的像差不同,為準(zhǔn)確掌握空間相機(jī)的像差特性,需要在全視場(chǎng)內(nèi)布置多個(gè)波前傳感器;同時(shí)又要考慮到,為降低系統(tǒng)復(fù)雜性和成本,不易布置太多的波前傳感器。 不同形式的光學(xué)系統(tǒng),其像差隨視場(chǎng)的變化特性可能不同,需根據(jù)其變化特性布置測(cè)量點(diǎn)數(shù)。對(duì)于同軸三反線陣空間相機(jī),可嘗試在中心視場(chǎng)和2個(gè)邊緣視場(chǎng)布置波前傳感器,根據(jù)3個(gè)視場(chǎng)的波前誤差檢測(cè),通過(guò)數(shù)據(jù)擬合的方法,實(shí)現(xiàn)全視場(chǎng)波前誤差的估計(jì)。對(duì)于同軸三反面陣空間相機(jī),可嘗試在中心視場(chǎng)和4個(gè)邊緣視場(chǎng)布置波前傳感器,根據(jù)5個(gè)視場(chǎng)的波前誤差檢測(cè),通過(guò)數(shù)據(jù)擬合的方法,實(shí)現(xiàn)全視場(chǎng)波前誤差的估計(jì)。本文對(duì)兩種方案的可行性和精度進(jìn)行了系統(tǒng)的仿真研究。 仿真研究中,利用Zemax軟件建立同軸三反系統(tǒng)模型,通過(guò)Matlab和Zemax之間的DDE通信,在光學(xué)系統(tǒng)模型中引入主鏡面形誤差、次鏡位置誤差、次鏡面形誤差、三鏡面形誤差等誤差源,并通過(guò)Matlab和Zemax之間的DDE通信,從Zemax中讀出各視場(chǎng)波前誤差,在Matlab中進(jìn)行分析。 仿真結(jié)果表明,同軸三反線陣空間相機(jī)寬視場(chǎng)波前誤差的在軌檢測(cè),在事先存貯原始設(shè)計(jì)誤差的情況下,僅需3個(gè)波前傳感器即可實(shí)現(xiàn)全視場(chǎng)波前誤差估計(jì),僅考慮擬合誤差時(shí),,絕對(duì)誤差在10-5量級(jí),相對(duì)誤差低于5%;同軸三反面陣空間相機(jī)寬視場(chǎng)波前誤差的在軌檢測(cè),可以通過(guò)事先存貯原始設(shè)計(jì)誤差,僅需5個(gè)波前傳感器即可實(shí)現(xiàn)全視場(chǎng)波前誤差估計(jì),僅考慮擬合誤差時(shí),絕對(duì)誤差在10-4量級(jí),相對(duì)誤差低于5%,其中Zernike多項(xiàng)式的某些項(xiàng)的系數(shù)較小,其估計(jì)值的相對(duì)誤差會(huì)較大,但對(duì)總誤差的貢獻(xiàn)不大。該研究為解決線陣、面陣空間相機(jī)全視場(chǎng)波前誤差的在軌檢測(cè)問(wèn)題,提供了一種可行方法。
[Abstract]:In recent years, with the development of high-resolution space optical remote sensor, the aperture of remote sensor becomes larger and larger. Due to the characteristics of long focal length, lightweight, foldable and the particularity of space orbit environment, the imaging quality is affected by many potential factors. There are generally two solutions to the problem of image quality degradation. One is to use the more complex adaptive optics technology. Another method is to detect pupil aberration in orbit only by using the wavefront sensing technique in adaptive optics, and then restore the image by off-line image restoration. The field of view of space camera is wider and the aberration of different field of view is different. In order to accurately grasp the aberration characteristics of space camera, it is necessary to arrange multiple wavefront sensors in the full field of view, and at the same time, to reduce the complexity and cost of the system, It is not easy to arrange too many wavefront sensors. The aberration characteristics of different optical systems may vary with the field of view, so the measurement points should be arranged according to their variation characteristics. We can try to arrange wavefront sensors in the center field of view and two edge fields of view. According to the wavefront error detection of three fields of view, we can realize the estimation of the wavefront error of the whole field of view by the method of data fitting. We can try to arrange the wavefront sensors in the central field of view and 4 edge fields of view. According to the wavefront error detection of the five fields of view, the method of data fitting can be used. In this paper, the feasibility and accuracy of the two schemes are systematically simulated. In the simulation research, the coaxial three inverse system model is established by using Zemax software. Through the DDE communication between Matlab and Zemax, the main mirror shape error, the secondary mirror position error, the secondary mirror shape error, the three mirror shape error and other error sources are introduced in the optical system model, such as the main mirror shape error, the secondary mirror position error, the third mirror shape error and so on. Through the DDE communication between Matlab and Zemax, the wavefront errors of each field of view are read out from Zemax and analyzed in Matlab. The simulation results show that in orbit detection of wide-field wavefront error of coaxial trisode array space camera, only three wavefront sensors can be used to estimate the wide-field wavefront error when the original design error is stored in advance. When only the fitting error is considered, the absolute error is in the order of 10-5 and the relative error is lower than 5. The in-orbit detection of the wide-field wavefront error of the three-sided array space camera can be detected by storing the original design error in advance. Only five wavefront sensors can be used to estimate the wavefront error of the whole field of view. When only the fitting error is considered, the absolute error is in the order of 10-4 and the relative error is less than 5. The coefficient of some items of the Zernike polynomial is smaller, and the relative error of the estimated value will be larger. This study provides a feasible method to solve the problem of in-orbit detection of the wavefront error in the full field of view of linear array and array space camera.
【學(xué)位授予單位】:北京理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:V443.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王路;王春艷;鮑智康;;長(zhǎng)焦距離軸三反射式光學(xué)系統(tǒng)設(shè)計(jì)[J];長(zhǎng)春理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年01期
2 張志偉,俞信,楊秉新;自適應(yīng)光學(xué)在空間光學(xué)遙感器上的應(yīng)用[J];高技術(shù)通訊;2000年03期
3 陳珂,趙達(dá)尊;自適應(yīng)光學(xué)中擴(kuò)展信標(biāo)波前探測(cè)的研究與實(shí)驗(yàn)[J];光學(xué)技術(shù);2001年05期
4 閻吉祥,俞信;大氣湍流對(duì)遙感系統(tǒng)分辨力的影響[J];光學(xué)技術(shù);2004年01期
5 馮樹(shù)龍,張新,翁志成,叢小杰;溫度對(duì)大口徑主鏡面形變形的影響分析[J];光學(xué)技術(shù);2005年01期
6 周昶寧,閻吉祥,俞信,曹根瑞;自適應(yīng)光學(xué)系統(tǒng)中大氣湍流的模型分析與計(jì)算機(jī)仿真[J];光學(xué)技術(shù);2005年02期
7 張曉芳,俞信,閻吉祥;大氣湍流對(duì)光學(xué)系統(tǒng)圖像分辨力的影響[J];光學(xué)技術(shù);2005年02期
8 張偉,劉劍峰,龍夫年,王治樂(lè);基于Zernike多項(xiàng)式進(jìn)行波面擬合研究[J];光學(xué)技術(shù);2005年05期
9 王欣;趙達(dá)尊;毛珩;王瀟;;相位變更方法發(fā)展簡(jiǎn)述[J];光學(xué)技術(shù);2009年03期
10 饒長(zhǎng)輝,張學(xué)軍,姜文漢;太陽(yáng)米粒結(jié)構(gòu)相關(guān)哈特曼-夏克波前傳感模擬研究[J];光學(xué)學(xué)報(bào);2002年03期
本文編號(hào):1684423
本文鏈接:http://sikaile.net/kejilunwen/hangkongsky/1684423.html