CFRP材料孔隙缺陷特征分布理論與實(shí)驗(yàn)研究
本文選題:CFRP復(fù)合材料 切入點(diǎn):孔隙率 出處:《哈爾濱工業(yè)大學(xué)》2015年碩士論文
【摘要】:CFRP復(fù)合材料由于具有許多非常優(yōu)異的性能,在大型飛行器設(shè)計和制造中受到了廣泛的重視,在航空航天飛機(jī)及其構(gòu)件中的應(yīng)用和所占的比重也相當(dāng)可觀。然而,復(fù)合材料構(gòu)件自身的結(jié)構(gòu)和組織形成原理導(dǎo)致碳纖維增強(qiáng)樹脂基復(fù)合材料在制造和使用過程中會產(chǎn)生諸如孔隙、分層等缺陷,這些缺陷在承載和服役過程中,隨著周圍環(huán)境的改變也會相應(yīng)發(fā)生擴(kuò)展和轉(zhuǎn)移。這對于大型飛機(jī)的使用和服役過程是一個巨大的安全隱患。高精度和高效率的無損檢測與多維準(zhǔn)確表征系統(tǒng)便是當(dāng)務(wù)之急。然而,大尺寸復(fù)合材料構(gòu)件制造缺陷和損傷的感知和表征極其困難,也對目前常規(guī)的無損檢測方法造成了很大的困難。要想準(zhǔn)確及高效地檢測CFRP復(fù)合材料構(gòu)件中的缺陷和分層,除了研究多尺度缺陷和損傷的高效無損檢測原來和表征方法之外,還有一個十分重要的方面便是深入研究分析復(fù)合材料中缺陷和損傷的產(chǎn)生機(jī)理與擴(kuò)展行為,并科學(xué)評價缺陷和損傷對各項(xiàng)性能的影響。本文利用統(tǒng)計、計算和模擬碳纖維增強(qiáng)樹脂基復(fù)合材料在固化過程中各個參數(shù)變化的質(zhì)變和量變過程,得到復(fù)合材料在制備過程中的固化溫度、固化壓強(qiáng)、固化率、粘度、表面張力/界面能、飽和溶解度等直接影響固化過程和氣孔形成和生長的各個參數(shù)隨著固化反應(yīng)進(jìn)行而產(chǎn)生的質(zhì)變曲線和量變方程式。得到了固化過程中氣泡的臨界形核尺寸變化規(guī)律:隨著溶解度下降和擴(kuò)散反應(yīng)加劇,氣泡的臨界形核尺寸呈上升趨勢,氣泡的形核最小形核尺寸為8μm;也得到了氣泡臨界生長尺寸公式,公式中R*與P基本上呈反比關(guān)系。氣泡通過生長可以達(dá)到的最大尺寸為23μm,加壓之后氣孔半徑縮小到4μm左右。固化過程中單個氣泡的生長過程為:9 min時氣泡開始形核,從10 min開始,氣孔以一定速率成長并最終達(dá)到穩(wěn)定。此外,本文通過CT法研究不同尺寸孔隙的數(shù)量發(fā)現(xiàn):射線CT法得到的孔隙沿著纖維方向在樹脂內(nèi)部分布,1μm分辨率條件下,材料中碳纖維成分占66.79 vol.%,樹脂成分占32.08 vol.%,孔隙成分占1.13 vol.%;7μm分辨率條件下,射線CT法得到數(shù)據(jù)顯示碳纖維成分占67.08 vol.%,樹脂成分占32.79vol.%,孔隙成分占0.84 vol.%。與1μm孔隙率1.13 vol.%相比,7μm的孔隙率略小。研究得到不同尺寸孔隙數(shù)量呈冪指數(shù)規(guī)律分布,越小的氣孔數(shù)量越多。通過本課題的研究,可以為碳纖維增強(qiáng)樹脂基復(fù)合材料的微觀、細(xì)觀和宏觀表征技術(shù)提供借鑒,獲得復(fù)合材料制備過程中造成缺陷和損傷的產(chǎn)生機(jī)理和擴(kuò)展行為數(shù)據(jù)。這對于以后研究多尺度復(fù)合材料典型缺陷損傷,開展大型復(fù)合材料制造缺陷和損傷研究,確定缺陷損傷的物理和幾何表現(xiàn)形式等具有重要意義。為航空航天飛機(jī)中大型復(fù)合材料構(gòu)件缺陷和損傷的高精度高效率無損檢測原理和方法的研究奠定了一定的基礎(chǔ)。
[Abstract]:Because of its many excellent properties, CFRP composite materials have been paid more and more attention in the design and manufacture of large aircraft, and the application and proportion in the space shuttle and its components are also considerable. The structure and microstructure of composite components lead to defects such as porosity, delamination and so on in the process of manufacture and use of carbon fiber reinforced resin matrix composites, which are in the process of carrying and service. As the surrounding environment changes, it will expand and shift accordingly. This is a huge security hazard for the use and service of large aircraft. The high precision and high efficiency nondestructive testing and multidimensional accurate representation system are. As a matter of urgency... however, It is very difficult to detect and characterize defects and damage in large scale composite components, which also makes it difficult to detect defects and delamination in CFRP composite components accurately and efficiently. In addition to studying the original and characterization methods of high efficient nondestructive testing for defects and damage in multi-scale, it is also very important to deeply study and analyze the mechanism and propagation behavior of defects and damage in composite materials. The effects of defects and damage on the properties were evaluated scientifically. In this paper, the qualitative and quantitative changes of the parameters of carbon fiber reinforced resin matrix composites during curing were calculated and simulated by means of statistics. The curing temperature, curing pressure, curing rate, viscosity, surface tension / interfacial energy of the composite were obtained. Saturation solubility and other parameters directly affecting the curing process and the formation and growth of pores are the qualitative change curves and the quantitative equations resulting from the curing reaction. The critical nucleation size variation gauge of the bubble during the curing process is obtained. Law: as the solubility decreases and the diffusion reaction intensifies, The critical nucleation size of bubbles tends to increase, and the minimum nucleation size of bubbles is 8 渭 m. The maximum size of bubble through growth is 23 渭 m, and the pore radius is reduced to about 4 渭 m after compression. The growth process of a single bubble during solidification is: 9: 9 min, when the bubble begins to nucleate, the maximum size of the bubble is 23 渭 m, and the pore radius is reduced to about 4 渭 m after compression. From 10 min onwards, the pores grew at a certain rate and finally reached stability. In addition, the number of pores of different sizes was studied by CT. The results showed that the pores obtained by X-ray CT were distributed in the resin at a resolution of 1 渭 m along the fiber direction. Carbon fiber is 66.79 vol.%, resin is 32.08 vol., pore is 1.13 vol. at 7 渭 m resolution. The data obtained by X-ray CT showed that carbon fiber composition was 67.08 vol.%, resin composition was 32.79 vol.%, pore composition was 0.84 vol..Compared with 1 渭 m porosity 1.13 vol.%, the porosity of 7 渭 m was slightly smaller. The smaller the number of pores, the more. Through the study of this topic, we can provide a reference for the microscopic, microcosmic and macroscopic characterization of carbon fiber reinforced resin matrix composites. The formation mechanism and spreading behavior data of defects and damage caused by composite materials were obtained, which can be used to study the typical defects of multiscale composite materials and to study the manufacturing defects and damage of large composite materials. It is of great significance to determine the physical and geometric forms of defect damage, which lays a foundation for the study of the principles and methods of high precision and high efficiency nondestructive detection for the defects and damage of large composite components in the space shuttle.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:V250
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 肖九梅;;碳纖維新材料的性能與應(yīng)用[J];化學(xué)工業(yè);2015年07期
2 張小溪;;復(fù)合材料成型工藝方法及優(yōu)缺點(diǎn)分析[J];科技與企業(yè);2014年18期
3 彭金濤;任天斌;;碳纖維增強(qiáng)樹脂基復(fù)合材料的最新應(yīng)用現(xiàn)狀[J];中國膠粘劑;2014年08期
4 陳三喜;周炎;楊衛(wèi)林;;軌道交通車輛鋁合金板材分層缺陷無損檢測方法淺析[J];技術(shù)與市場;2014年03期
5 付娟娟;;圖像測量技術(shù)及其在無損檢測中的應(yīng)用[J];黑龍江科技信息;2014年06期
6 張凱;王健;;無損檢測與評價在起重機(jī)械檢驗(yàn)中的應(yīng)用[J];機(jī)械工程與自動化;2014年01期
7 李灼華;;射線檢測在復(fù)合材料無損檢測中的應(yīng)用[J];科技傳播;2014年03期
8 李青;;無損檢測技術(shù)在煤礦設(shè)備安檢中的應(yīng)用[J];內(nèi)蒙古煤炭經(jīng)濟(jì);2014年01期
9 翟濤;;承壓類特種設(shè)備無損檢測技術(shù)綜合論述[J];企業(yè)技術(shù)開發(fā);2014年01期
10 侯勝利;姚武文;董俊;;飛機(jī)復(fù)合材料損傷無損檢測方法及其選擇[J];機(jī)電產(chǎn)品開發(fā)與創(chuàng)新;2013年04期
相關(guān)博士學(xué)位論文 前1條
1 楊小軍;CFRP-木材復(fù)合材界面力學(xué)特性研究[D];南京林業(yè)大學(xué);2012年
,本文編號:1670035
本文鏈接:http://sikaile.net/kejilunwen/hangkongsky/1670035.html