電動加載模擬器控制系統(tǒng)研究
本文選題:電動加載模擬器 切入點:多余力矩 出處:《中國民航大學(xué)》2015年碩士論文
【摘要】:電動加載模擬器是重要的半實物仿真設(shè)備,它可以模擬飛行器舵機(jī)所承受的空氣動力矩,對測試不同型號舵機(jī)的性能具有重要的意義。隨著現(xiàn)代科學(xué)技術(shù)的發(fā)展,對飛行器舵機(jī)的控制性能和精度提出了更高的要求,因此對電動加載模擬器的控制性能和加載精度的要求也越來越高。針對電動加載模擬器的控制系統(tǒng),本文主要進(jìn)行了以下研究:1)以TMS320F2812DSP為控制核心設(shè)計了電動加載模擬器的硬件仿真平臺,基于C語言編寫了DSP各功能模塊的應(yīng)用程序;基于VC++6.0設(shè)計了上下位機(jī)的通信軟件和人機(jī)交互軟件。2)根據(jù)設(shè)計的電動加載模擬器硬件仿真平臺,建立了模擬器的數(shù)學(xué)模型,在考慮了電動加載模擬器參數(shù)不確定性和非線性環(huán)節(jié)影響基礎(chǔ)上,指出常規(guī)的固定參數(shù)的控制器無法滿足高精度控制要求。3)在數(shù)學(xué)模型的基礎(chǔ)上,對系統(tǒng)加載通道的性能和系統(tǒng)存在的多余力矩進(jìn)行了仿真分析,提出了基于極點配置自校正和前饋補(bǔ)償方法相結(jié)合的復(fù)合控制策略,實現(xiàn)系統(tǒng)的實時在線控制。仿真結(jié)果表明,此復(fù)合控制方法對改善系統(tǒng)控制性能、克服參數(shù)時變以及抑制多余力矩方面具有良好的效果。4)為進(jìn)一步提高系統(tǒng)的控制性能和抑制多余力矩,將系統(tǒng)的不確定性、多余力矩以及非線性干擾統(tǒng)一看作系統(tǒng)的外部干擾,在自動估測外部干擾上下界前提下,提出了一種模糊趨近律的滑模變結(jié)構(gòu)的控制策略。為了抑制滑模變結(jié)構(gòu)帶來的高頻抖振,模糊趨近率綜合考慮系統(tǒng)趨近的距離和速度基礎(chǔ)上,動態(tài)調(diào)整系統(tǒng)趨近的速度,實現(xiàn)滑模變結(jié)構(gòu)控制的粗細(xì)調(diào)節(jié)。仿真結(jié)果表明,基于改進(jìn)模糊趨近律方法的滑模自適應(yīng)控制對參數(shù)攝動和外干擾具有強(qiáng)魯棒性和自適應(yīng)方法的特性,能夠有效消除系統(tǒng)的不確定性、非線性特性和多余力矩對控制系統(tǒng)的影響,提高系統(tǒng)的控制性能。
[Abstract]:The electric loading simulator is an important hardware-in-the-loop simulation equipment. It can simulate the aerodynamic moment of the aircraft steering gear, and it is of great significance to test the performance of different types of steering gear. With the development of modern science and technology, Higher requirements for the control performance and accuracy of the aircraft steering gear are put forward, so the requirements for the control performance and loading accuracy of the electric loading simulator are becoming higher and higher. In this paper, the following research is carried out: (1) the hardware simulation platform of the electric loading simulator is designed with TMS320F2812DSP as the control core, and the application program of each function module of DSP is compiled based on C language. Based on VC 6.0, the communication software of upper and lower computer and man-machine interaction software. 2) based on the hardware simulation platform of electric loading simulator, the mathematical model of simulator is established. On the basis of considering the uncertainty of parameters and the influence of nonlinear link in the electric loading simulator, it is pointed out that the conventional controller with fixed parameters can not meet the requirement of high precision control. 3) on the basis of mathematical model, The performance of the system loading channel and the excess torque of the system are simulated and analyzed. A composite control strategy based on pole assignment self-tuning and feedforward compensation is proposed to realize the real-time on-line control of the system. This compound control method has a good effect on improving the control performance of the system, overcoming the time-varying parameters and suppressing the excess torque. 4) in order to further improve the control performance of the system and suppress the excess torque, the uncertainty of the system is brought forward. The superfluous moment and nonlinear disturbance are regarded as the external disturbances of the system, and the upper and lower bounds of the external disturbances are automatically estimated. A sliding mode variable structure control strategy with fuzzy approach law is proposed. In order to suppress the high frequency buffeting caused by the sliding mode variable structure, the fuzzy approach rate considers the distance and velocity of the system approach, and dynamically adjusts the speed of the system approach. The simulation results show that the sliding mode adaptive control based on the improved fuzzy approach law is robust and adaptive to parameter perturbation and external disturbance. It can effectively eliminate the uncertainty of the system, the influence of nonlinear characteristics and excess torque on the control system, and improve the control performance of the system.
【學(xué)位授予單位】:中國民航大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:V216.8
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 何學(xué)明;;新型混合趨近律控制器的設(shè)計[J];機(jī)械與電子;2010年02期
2 姚中華;孫躍;唐春森;王智慧;戴欣;;連續(xù)時間系統(tǒng)滑模趨近律的改進(jìn)[J];重慶大學(xué)學(xué)報;2013年04期
3 周靖林,姜會霞,雷飛;離散變結(jié)構(gòu)控制系統(tǒng)的廣義變速趨近律[J];電機(jī)與控制學(xué)報;2005年06期
4 黃斌;;基于離散趨近律的變結(jié)構(gòu)系統(tǒng)控制[J];山東大學(xué)學(xué)報(工學(xué)版);2011年01期
5 吳漢松,宋立忠,姚瓊薈;離散變速趨近律抖振機(jī)理及魯棒性研究[J];海軍工程大學(xué)學(xué)報;2004年06期
6 盛嚴(yán),王超,陳建斌,劉玉華;結(jié)構(gòu)滑?刂频囊环N指數(shù)趨近律方法[J];噪聲與振動控制;2002年04期
7 靳寶全;熊詩波;程珩;;電液位置伺服系統(tǒng)的變速趨近律滑?刂贫墩褚种芠J];機(jī)械工程學(xué)報;2013年10期
8 呂強(qiáng);王冬來;劉峰;白洪瑞;;基于非線性指數(shù)趨近律的離散滑模變結(jié)構(gòu)控制[J];彈箭與制導(dǎo)學(xué)報;2012年05期
9 于媛媛;吳慶憲;姜長生;;基于冪次趨近律的單向輔助面滑模控制[J];電光與控制;2014年04期
10 趙斌;建筑結(jié)構(gòu)抗震控制的閉環(huán)趨近律方法[J];同濟(jì)大學(xué)學(xué)報(自然科學(xué)版);2001年10期
相關(guān)會議論文 前4條
1 齊彬蔚;陳展琴;;基于指數(shù)趨近律直接驅(qū)動的數(shù)控轉(zhuǎn)臺的自適應(yīng)二階滑?刂芠A];第十一屆沈陽科學(xué)學(xué)術(shù)年會暨中國汽車產(chǎn)業(yè)集聚區(qū)發(fā)展與合作論壇論文集(信息科學(xué)與工程技術(shù)分冊)[C];2014年
2 樊立萍;于亞洲;;DC-DC變換器的滑模控制[A];第七屆全國信息獲取與處理學(xué)術(shù)會議論文集[C];2009年
3 李慧;謝慕君;李元春;;著陸小行星變指數(shù)趨近律滑模變結(jié)構(gòu)控制方法[A];中國宇航學(xué)會深空探測技術(shù)專業(yè)委員會第十屆學(xué)術(shù)年會論文集[C];2013年
4 于亞洲;;DC-DC變換器的自適應(yīng)離散滑?刂芠A];創(chuàng)新沈陽文集(A)[C];2009年
相關(guān)碩士學(xué)位論文 前2條
1 楊森;電動加載模擬器控制系統(tǒng)研究[D];中國民航大學(xué);2015年
2 龔倫齊;基于改進(jìn)趨近律的離散時間系統(tǒng)變結(jié)構(gòu)控制方法研究[D];重慶大學(xué);2010年
,本文編號:1654999
本文鏈接:http://sikaile.net/kejilunwen/hangkongsky/1654999.html