小空心葉片渦流測(cè)厚傳感器的仿真分析與研制
發(fā)布時(shí)間:2018-02-26 10:07
本文關(guān)鍵詞: 渦流測(cè)厚 電磁仿真 正交實(shí)驗(yàn) 空心葉片 ANSYS 出處:《哈爾濱工業(yè)大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:發(fā)動(dòng)機(jī)葉片制造過程中的誤差和各種結(jié)構(gòu)形式會(huì)直接影響到葉片的疲勞特性和結(jié)構(gòu)強(qiáng)度,使得發(fā)動(dòng)機(jī)的整體性能減弱,使用壽命縮短。為了保證發(fā)動(dòng)機(jī)能夠安全運(yùn)行,要求發(fā)動(dòng)機(jī)空心葉片外表面到內(nèi)表面的法線方向厚度誤差必須在允許的范圍之內(nèi),進(jìn)而確保空心葉片的強(qiáng)度指標(biāo)和結(jié)構(gòu)參數(shù)。目前對(duì)于新型航空發(fā)動(dòng)機(jī)小空心葉片壁厚的測(cè)量范圍要求為0.1mm-3mm,并且測(cè)量的不確定度小于0.05mm。本課題選擇了一種NDT檢測(cè)法——渦流檢測(cè),設(shè)計(jì)出一種精密的小空心葉片渦流測(cè)厚傳感器,在精度、穩(wěn)定性以及測(cè)量范圍上均能滿足測(cè)量要求。本文首先介紹了渦流測(cè)厚的基本原理以及電磁場(chǎng)的基本理論,從電磁場(chǎng)基本理論出發(fā),應(yīng)用渦流阻抗分析法,總結(jié)出渦流強(qiáng)度與檢測(cè)距離(測(cè)量厚度)和激勵(lì)頻率的關(guān)系,渦流傳感器受到溫度的影響,以及渦流的徑向和縱向分布情況。然后利用有限元軟件ANSYS對(duì)渦流測(cè)厚時(shí)的電磁場(chǎng)進(jìn)行仿真分析,建立出軸對(duì)稱的二維模型,考慮到周邊空氣,應(yīng)用了遠(yuǎn)場(chǎng)單元,得出如下結(jié)論:測(cè)量的小空心葉片厚度發(fā)生改變時(shí),測(cè)量線圈阻抗的虛部發(fā)生變化最為明顯,這為信號(hào)的提取提供依據(jù);施加的激勵(lì)頻率越大,金屬基底產(chǎn)生的渦流集膚效應(yīng)越明顯,頻率的增加使得線圈阻抗的虛部增加,而實(shí)部幾乎不變,因此對(duì)于不同探測(cè)范圍,應(yīng)當(dāng)選擇不同的激勵(lì)頻率;基底上產(chǎn)生的渦流和線圈平均半徑大致相同;不同的基底材料使得磁力線的分布截然不同,通過對(duì)比4種基底材料,銅能引起的線圈阻抗虛部的變化幅度最小,而硅鋼的效果最好,引起阻抗虛部的變化幅度最大,能夠擁有較好的靈敏度和穩(wěn)定性。通過有限元仿真只能定性的分析各個(gè)參數(shù)的影響,并不能得到準(zhǔn)確的數(shù)值,因此最后通過正交實(shí)驗(yàn)得到了各參數(shù)的最優(yōu)水平和最佳組合,并經(jīng)過實(shí)際測(cè)量驗(yàn)證,成功研制出能夠滿足測(cè)量精度和測(cè)量范圍的渦流測(cè)厚傳感器。
[Abstract]:The errors and various structural forms in the manufacturing process of engine blades will directly affect the fatigue characteristics and structural strength of the blades, which will weaken the overall performance of the engine, shorten its service life, and ensure the safe operation of the engine. The normal thickness error from the outer surface to the inner surface of the hollow blade of the engine must be within the allowable range. In order to ensure the strength index and structural parameters of the hollow blade, the current measurement range for the wall thickness of the small hollow blade of the new aeroengine is 0.1 mm ~ 3mm, and the uncertainty of the measurement is less than 0.05 mm. In this paper, a NDT detection method, eddy current test, is chosen. A precise eddy current thickness sensor with small hollow vane is designed, which can meet the measurement requirements in terms of accuracy, stability and measurement range. Firstly, the basic principle of eddy current thickness measurement and the basic theory of electromagnetic field are introduced in this paper. Based on the basic theory of electromagnetic field, the relationship between eddy current intensity and measuring distance (measuring thickness) and excitation frequency is summarized by means of eddy current impedance analysis. The eddy current sensor is affected by temperature. And the radial and longitudinal distribution of eddy current. Then the electromagnetic field of eddy current thickness measurement is simulated and analyzed by finite element software ANSYS, and an axisymmetric two-dimensional model is established. Considering the surrounding air, the far-field element is used. The following conclusions are drawn: when the thickness of the measured small hollow blade changes, the imaginary part of the measurement coil impedance changes most obviously, which provides the basis for the signal extraction. The skin effect of eddy current produced by metal substrate is more obvious, the increase of frequency makes the imaginary part of coil impedance increase, but the real part is almost unchanged. Therefore, different excitation frequency should be chosen for different detection range. The average radius of eddy current and coil on the substrate is approximately the same, and the magnetic field line is distributed differently by different substrate materials. By comparing the four kinds of substrate materials, the variation amplitude of the imaginary part of the coil impedance caused by copper energy is the smallest. The effect of silicon steel is the best, the change of impedance imaginary part is the largest, and it can have better sensitivity and stability. The influence of each parameter can only be qualitatively analyzed by finite element simulation, but the exact value can not be obtained. Finally, the optimal level and combination of the parameters are obtained by orthogonal experiment, and the eddy current thickness sensor which can satisfy the measuring accuracy and range is developed successfully after the actual measurement.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:V263;TP212
【參考文獻(xiàn)】
中國(guó)期刊全文數(shù)據(jù)庫(kù) 前1條
1 郝拉娣;張嫻;劉琳;;科技論文中正交試驗(yàn)結(jié)果分析方法的使用[J];編輯學(xué)報(bào);2007年05期
中國(guó)博士學(xué)位論文全文數(shù)據(jù)庫(kù) 前1條
1 高軍哲;多頻渦流無損檢測(cè)的干擾抑制和缺陷檢測(cè)方法研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2011年
中國(guó)碩士學(xué)位論文全文數(shù)據(jù)庫(kù) 前1條
1 于亞婷;電渦流傳感器的電磁場(chǎng)仿真分析[D];電子科技大學(xué);2005年
,本文編號(hào):1537565
本文鏈接:http://sikaile.net/kejilunwen/hangkongsky/1537565.html
最近更新
教材專著