航空弧齒錐齒輪的嚙合特性分析及齒面設(shè)計(jì)研究
本文關(guān)鍵詞:航空弧齒錐齒輪的嚙合特性分析及齒面設(shè)計(jì)研究 出處:《西北工業(yè)大學(xué)》2015年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 弧齒錐齒輪 傳動誤差 齒面印痕 齒面設(shè)計(jì)方法 試驗(yàn)測試
【摘要】:弧齒錐齒輪因具有傳動平穩(wěn)、承載能力強(qiáng)、結(jié)構(gòu)緊湊等優(yōu)點(diǎn),被廣泛應(yīng)用于航空領(lǐng)域的傳動中,作為航空發(fā)動機(jī)附件傳動裝置的關(guān)鍵部件,其嚙合質(zhì)量對系統(tǒng)的影響至關(guān)重要。齒面印痕和傳動誤差是評價嚙合質(zhì)量的關(guān)鍵指標(biāo),本文針對航空用弧齒錐齒輪,借助于輪齒幾何接觸分析(Tooth Contact Analysis,TCA)、承載接觸分析(Loaded TCA,LTCA)等計(jì)算機(jī)仿真方法和試驗(yàn)測試手段,開展了高階傳動誤差曲線的加工參數(shù)設(shè)計(jì)、嚙合性能分析以及考慮齒面印痕偏移的小輪齒面再設(shè)計(jì)等一系列研究工作,形成軟件系統(tǒng)并將其應(yīng)用于航空產(chǎn)品的開發(fā)與試制。論文主要成果如下:(1)研究了弧齒錐齒輪小輪加工參數(shù)的逆向求解問題。已知小輪數(shù)值齒面,建立最小二乘法優(yōu)化模型,采用基于置信域策略的L-M(Levenberg-Marquardt)迭代算法反求相應(yīng)的小輪加工參數(shù)。該算法為高階傳動誤差設(shè)計(jì)的小輪齒面主動修形技術(shù)提供了應(yīng)用基礎(chǔ)。(2)研究了弧齒錐齒輪傳動誤差的設(shè)計(jì)方法。一、在局部綜合法的基礎(chǔ)上,進(jìn)行了二階拋物線傳動誤差的優(yōu)化設(shè)計(jì);二、基于假想大輪加工小輪的概念,提出了小輪齒面的主動修形設(shè)計(jì),預(yù)置高階傳動誤差(四階拋物線、七階中凹型曲線)的設(shè)計(jì)參數(shù),在與大輪完全共軛的小輪基準(zhǔn)齒面上構(gòu)建小輪修形齒面,采用上文所述的逆向求解算法反求小輪加工參數(shù);三、在二階拋物線傳動誤差的基礎(chǔ)上,提出了高階傳動誤差(七階中凹型曲線)設(shè)計(jì)的變性系數(shù)修正法,直接控制高階傳動誤差曲線上的設(shè)計(jì)嚙合點(diǎn),建立約束方程組,通過求解非線性方程組獲得各階變性系數(shù),而其余加工參數(shù)仍與二階拋物線傳動誤差設(shè)計(jì)相同。(3)研究了弧齒錐齒輪不同類型傳動誤差齒面的嚙合性能。在設(shè)計(jì)重合度、傳動誤差曲線下端幅值大體相同的前提下,定量比較了二階、四階及七階設(shè)計(jì)的齒輪副動態(tài)性能和強(qiáng)度性能。計(jì)算結(jié)果表明,輕載條件下四階設(shè)計(jì)的振動較小,而工作載荷下七階設(shè)計(jì)有更好的動態(tài)性能。相對于二階設(shè)計(jì),工作載荷下四階、七階設(shè)計(jì)均可以降低最大齒面接觸應(yīng)力和最大齒根彎曲應(yīng)力的數(shù)值。(4)研究了基于齒面印痕偏移的弧齒錐齒輪當(dāng)量安裝錯位反求和小輪齒面再設(shè)計(jì)。首先分析了可導(dǎo)致相同齒面印痕的不同安裝錯位組合之間的關(guān)系;然后提取齒面印痕的數(shù)字化特征,以逼近齒面接觸跡線為目標(biāo),通過優(yōu)化方法高精度地反求與齒面印痕匹配的當(dāng)量安裝錯位;最后采用二階拋物線傳動誤差的優(yōu)化設(shè)計(jì)方法,在此錯位下重新計(jì)算小輪加工參數(shù)。(5)對弧齒錐齒輪的嚙合性能進(jìn)行了試驗(yàn)驗(yàn)證。完成了二階、四階及七階設(shè)計(jì)的齒輪副切齒、滾檢、印痕發(fā)展及箱體振動加速度測試等試驗(yàn)內(nèi)容。試驗(yàn)結(jié)果與理論分析基本一致,驗(yàn)證了齒面設(shè)計(jì)、切齒參數(shù)計(jì)算和嚙合性能分析的正確性。
[Abstract]:Arc bevel gear is widely used in aeronautical transmission because of its advantages such as stable transmission, strong bearing capacity, compact structure, and so on, as the key component of the accessory transmission device of aero-engine. The tooth surface mark and transmission error are the key indexes to evaluate the meshing quality. This paper aims at the arc bevel gear used in aviation. With the aid of gear tooth geometric contact analysis, Tooth Contact Analysis (TCA) is used to carry the loaded TCA. The design of machining parameters of high-order transmission error curve has been carried out by means of computer simulation and test methods such as LTCA. Meshing performance analysis and a series of research work such as gear tooth surface redesign considering tooth surface imprint offset. The software system is formed and applied to the development and trial manufacture of aeronautical products. The main achievements in this paper are as follows: 1) the inverse solution of machining parameters of spiral bevel gear is studied. The numerical tooth surface of the small wheel is known. The optimization model of the least square method is established. L-MN Levenberg-Marquardt based on confidence region Strategy. The iterative algorithm is used to calculate the parameters of gear machining. The algorithm provides a basis for the active profile modification of gear surface in the design of high-order transmission error. The design method of the transmission error of spiral bevel gear is studied. Based on the local synthesis method, the optimal design of the second-order parabola transmission error is carried out. Secondly, based on the concept of hypothetical big wheel machining small wheel, this paper presents the design parameters of gear tooth surface active modification and preset high order transmission error (fourth order parabola, seventh order middle concave curve). The modified tooth surface of the small wheel is constructed on the base tooth surface of the small wheel which is completely conjugated with the big wheel, and the reverse solution algorithm mentioned above is used to reverse calculate the machining parameters of the small wheel. Thirdly, on the basis of the second order parabola transmission error, the variable coefficient correction method for the design of high order transmission error (seventh order middle concave curve) is proposed, which directly controls the design meshing point on the high order transmission error curve. The constraint equations are established and the variable coefficients of each order are obtained by solving the nonlinear equations. The other machining parameters are still the same as the second order parabola transmission error design. The meshing performance of the tooth surface of different types of transmission errors of arc bevel gear is studied. The dynamic and strength properties of the gear pairs designed in the second order, fourth order and seventh order are compared quantitatively on the premise that the amplitude of the bottom end of the transmission error curve is approximately the same. The calculated results show that the vibration of the fourth order design is smaller under the condition of light load. The seventh order design has better dynamic performance than the second order design, and the fourth order under the working load is better than the second order design. The seventh order design can reduce the maximum tooth surface contact stress and the maximum tooth root bending stress. Based on the offset of tooth surface impression, the reverse misalignment of spiral bevel gear and the re-design of gear surface are studied. Firstly, the relationship between different misalignment combinations that can lead to the same impression of tooth surface is analyzed. Then the digital feature of the tooth surface mark is extracted and the equivalent misalignment matching with the tooth surface mark is obtained by the optimization method aiming at approaching the contact line of the tooth surface. Finally, the meshing performance of spiral bevel gear is tested and verified by using the optimal design method of second-order parabola transmission error, and the machining parameters of small wheel are recalculated under this misalignment. The fourth and seventh order gear pair cutting, roll checking, mark development and vibration acceleration test of the box are tested. The experimental results are basically consistent with the theoretical analysis, and verify the tooth surface design. The correctness of tooth cutting parameter calculation and meshing performance analysis.
【學(xué)位授予單位】:西北工業(yè)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:V229
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 易傳云,王濤,王伏林;二維數(shù)字化齒面的展成方法研究[J];中國機(jī)械工程;2003年24期
2 臧權(quán)同;;連桿大端及其齒面的合理設(shè)計(jì)[J];內(nèi)燃機(jī)學(xué)報(bào);1985年02期
3 易傳云,王濤,王伏林;三維數(shù)字化齒面的展成方法研究[J];機(jī)械科學(xué)與技術(shù);2003年06期
4 唐進(jìn)元;曹康;周超;李國順;;小輪齒面誤差與調(diào)整參數(shù)誤差敏感性研究[J];航空動力學(xué)報(bào);2009年09期
5 蔡香偉;方宗德;蘇進(jìn)展;;基于數(shù)控切齒的弧線齒面齒輪嚙合特性研究[J];航空動力學(xué)報(bào);2012年01期
6 王伏林,易傳云,楊叔子,劉洪貴;二維數(shù)字化齒面加工誤差分析[J];華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年11期
7 王伏林;易傳云;胡仲勛;陳靜;;一種二維數(shù)字化齒面加工方法研究[J];湖南大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年02期
8 劉洪貴,易傳云,王濤,王伏林;數(shù)字化齒面展成加工運(yùn)動仿真研究[J];工具技術(shù);2004年05期
9 汪中厚;李剛;久保愛三;;基于數(shù)字化真實(shí)齒面的螺旋錐齒輪齒面接觸分析[J];機(jī)械工程學(xué)報(bào);2014年15期
10 王伏林,易傳云,王濤,楊叔子;數(shù)字化齒面加工誤差評定基準(zhǔn)研究[J];中國機(jī)械工程;2003年19期
相關(guān)博士學(xué)位論文 前9條
1 杜進(jìn)輔;擺線齒準(zhǔn)雙曲面齒輪齒面嚙合性能分析及設(shè)計(jì)技術(shù)研究[D];西北工業(yè)大學(xué);2015年
2 蔡香偉;航空弧齒錐齒輪的嚙合特性分析及齒面設(shè)計(jì)研究[D];西北工業(yè)大學(xué);2015年
3 聶少武;基于完全共軛的擺線錐齒輪齒面失配設(shè)計(jì)及修正理論研究[D];西北工業(yè)大學(xué);2015年
4 王小林;準(zhǔn)雙曲面齒輪齒面參數(shù)化和接觸可視化方法研究[D];華中科技大學(xué);2006年
5 王伏林;數(shù)字化齒面展成加工及誤差補(bǔ)償研究[D];華中科技大學(xué);2005年
6 徐彥偉;弧齒錐齒輪銑齒機(jī)主動精度設(shè)計(jì)方法研究[D];天津大學(xué);2010年
7 劉光磊;孤齒錐齒輪傳動動態(tài)接觸特性研究[D];西北工業(yè)大學(xué);2000年
8 凌文鋒;螺旋傘齒輪新加工方法及關(guān)鍵技術(shù)的研究[D];北京交通大學(xué);2008年
9 陳思雨;圓柱齒輪傳動齒面形狀與非線性特性關(guān)聯(lián)規(guī)律分析及實(shí)驗(yàn)研究[D];中南大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 權(quán)中華;推土機(jī)終傳動齒輪刮削工藝關(guān)鍵技術(shù)研究[D];山東大學(xué);2015年
2 明希軍;準(zhǔn)雙曲面錐齒輪實(shí)體建模與齒面接觸分析[D];沈陽工業(yè)大學(xué);2016年
3 孔二方;蝸桿砂輪磨削異形螺旋曲面中的齒面扭曲補(bǔ)償方法研究[D];重慶大學(xué);2015年
4 馮楠;雙粗糙齒面接觸時的彈流潤滑數(shù)值分析[D];太原理工大學(xué);2016年
5 李大偉;基于齒面統(tǒng)一數(shù)學(xué)模型的螺旋錐齒輪數(shù)控加工研究[D];鄭州大學(xué);2009年
6 曹康;螺旋錐齒輪精確幾何建模與齒面誤差反調(diào)修正研究[D];中南大學(xué);2009年
7 邢彬;螺旋錐齒輪齒面三坐標(biāo)測量機(jī)測量關(guān)鍵技術(shù)與測量數(shù)據(jù)應(yīng)用研究[D];中南大學(xué);2010年
8 趙小波;汽車后橋弧齒錐齒輪齒面反求及動態(tài)性能分析[D];重慶理工大學(xué);2014年
9 翟慶富;錐齒輪齒面反求與分析方法[D];重慶理工大學(xué);2009年
10 劉高杰;小模數(shù)弧齒錐齒輪粉末冶金成形齒面的設(shè)計(jì)與模具制作[D];河南科技大學(xué);2014年
,本文編號:1417027
本文鏈接:http://sikaile.net/kejilunwen/hangkongsky/1417027.html