薄壁件柔性裝夾加工變形研究
本文關(guān)鍵詞:薄壁件柔性裝夾加工變形研究 出處:《沈陽(yáng)航空航天大學(xué)》2016年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 薄壁件 加工變形 有限元方法 多點(diǎn)柔性工裝 遺傳算法
【摘要】:航空大型薄壁件由于其尺寸大,剛度低,結(jié)構(gòu)復(fù)雜,在加工過程中極易產(chǎn)生加工變形,使得其加工成本高、周期長(zhǎng),制約著航空制造業(yè)的發(fā)展,一直以來都在尋求有效的方法解決這類問題。隨著自動(dòng)化水平的不斷提高,多點(diǎn)柔性工裝系統(tǒng)成為研究的熱點(diǎn),它能夠有效的解決大型薄壁件在銑削加工中的變形問題。國(guó)外已經(jīng)將其應(yīng)用到實(shí)際生產(chǎn)中,國(guó)內(nèi)仍處于研發(fā)和工藝試驗(yàn)階段。本文針對(duì)開發(fā)柔性工裝系統(tǒng)的需求,對(duì)其在控制薄壁件加工變形的方法進(jìn)行研究,對(duì)多點(diǎn)柔性工裝系統(tǒng)的設(shè)計(jì)予以借鑒。首先,通過UG軟件建立銑刀模型,導(dǎo)入ABAQUS有限元分析軟件,采用有限元分析軟件ABAQUS對(duì)銑削加工過程及多點(diǎn)柔性工裝裝夾定位過程進(jìn)行有效建模,準(zhǔn)確定義有限元模型的各項(xiàng)材料屬性、接觸方法、本構(gòu)模型和分離準(zhǔn)則等。并對(duì)多點(diǎn)柔性工裝系統(tǒng)的基本組成和工作原理進(jìn)行介紹,對(duì)多點(diǎn)定位原理進(jìn)行分析。通過實(shí)驗(yàn)的方法對(duì)航空鋁合金7050-T7451進(jìn)行實(shí)際銑削加工以建立其銑削力學(xué)模型,為多點(diǎn)柔性工裝支撐單元數(shù)量的確定提供依據(jù)。然后,運(yùn)用有限元方法對(duì)比分析多點(diǎn)柔性工裝相對(duì)傳統(tǒng)裝夾有著明顯的優(yōu)勢(shì),并驗(yàn)證了有限元模型的有效性。接著利用有限元的方法分析在僅有重力和裝夾力的作用下夾持力、支撐單元布局和支撐單元間距對(duì)薄壁件變形的影響規(guī)律;在銑削加工過程中,研究夾持力、支撐單元布局和支撐單元間距對(duì)加工變形的影響規(guī)律?偨Y(jié)出能夠有效節(jié)省調(diào)配時(shí)間和資源占用率的裝夾布局方法。最后,結(jié)合有限元技術(shù)、正交實(shí)驗(yàn)理論和多元非線性回歸的方法,提出以支撐單元的布局為設(shè)計(jì)參數(shù),建立以薄壁件的最大變形和平均變形為指標(biāo)的加工變形預(yù)測(cè)模型。為了簡(jiǎn)化計(jì)算,采用加權(quán)的方法將多目標(biāo)預(yù)測(cè)模型轉(zhuǎn)化為單目標(biāo)預(yù)測(cè)模型,進(jìn)一步以該單目標(biāo)預(yù)測(cè)模型為目標(biāo)函數(shù),采用全局尋優(yōu)能力較強(qiáng)的遺傳算法進(jìn)行優(yōu)化計(jì)算,得到理論最優(yōu)的裝夾布局。
[Abstract]:Because of its large size, low rigidity and complex structure, aviation large thin-walled parts are prone to machining deformation during the processing, making the processing cost high and the cycle long, which restricts the development of aviation manufacturing industry. With the continuous improvement of automation level, multi-point flexible tooling system has become a research hotspot. It can effectively solve the deformation problem of large thin-walled parts in milling. It has been applied to practical production abroad, and it is still in the stage of R & D and process test in China. In view of the demand of developing flexible tooling system, this paper studies the method of controlling the deformation of thin-walled parts, and provides reference for the design of multi-point flexible tooling system. First of all, the establishment of tool model by UG software, using ABAQUS finite element analysis software, using finite element analysis software ABAQUS of milling process and multi point flexible tooling clamping and positioning process of effective modeling, accurate definition of the finite element model of the material properties, contact method, constitutive model and separation criterion. The basic composition and working principle of the multi point flexible tooling system are introduced, and the principle of multi point positioning is analyzed. The milling process of aviation aluminum alloy 7050-T7451 is experimentally established to establish its milling mechanics model, which provides a basis for determining the number of supporting units of multi-point flexible tooling. Then, the finite element method is used to compare the advantages of the multi point flexible tooling to the traditional clamping, and the validity of the finite element model is verified. Then, using the method of finite element analysis of clamping force, supporting unit layout and supporting unit spacing on the deformation of the thin-walled parts with only gravity and clamping force; in the milling process of clamping force, supporting unit layout and supporting unit spacing the influence law of the machining deformation. The packing layout method which can effectively save time and resource occupancy rate is summarized. Finally, combined with the finite element technology, orthogonal experiment theory and multivariate nonlinear regression method, a prediction model for machining deformation based on the maximum deformation and average deformation of thin-walled components is put forward, taking the layout of supporting elements as design parameters. In order to simplify the calculation, the multi-objective prediction model is transformed into a single target prediction model by weighted method. Further, the single objective prediction model is taken as the objective function, and the genetic algorithm with strong global optimization ability is used to optimize the calculation.
【學(xué)位授予單位】:沈陽(yáng)航空航天大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:V261.23
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 宮文強(qiáng),冷長(zhǎng)庚,劉立和;輔助支承在薄壁件加工中的應(yīng)用[J];機(jī)械制造;2004年01期
2 李文;一種高精度環(huán)形薄壁件工藝方法的探討[J];機(jī)械工人.冷加工;2004年04期
3 袁春曉,馮曉露;一種校直磨削加工中薄壁件變形的方法[J];機(jī)械制造;2004年12期
4 陳蔚芳;樓佩煌;陳華;;薄壁件加工變形主動(dòng)補(bǔ)償方法[J];航空學(xué)報(bào);2009年03期
5 汪濤;賈愛青;;大型高精度薄壁件的以車代磨試驗(yàn)[J];金屬加工(冷加工);2009年04期
6 石明良;;巧卸薄壁件[J];機(jī)械工人技術(shù)資料;1975年12期
7 高志祥;談?wù)劚”诩亩x域[J];航空標(biāo)準(zhǔn)化;1982年04期
8 吳鳴玉;;薄壁件縱焊縫焊接機(jī)[J];機(jī)械設(shè)計(jì)與制造;1990年02期
9 尹三元,張喜春;大直徑薄壁件的磨削[J];機(jī)械工人.冷加工;1991年11期
10 趙根生,熊華紹;小型薄壁件擠塑模的設(shè)計(jì)[J];模具工業(yè);1993年11期
相關(guān)會(huì)議論文 前10條
1 萬秀屏;譚薇;范鑫;馮欣明;文寶林;;某大型薄壁件車加工變形質(zhì)量控制[A];第九屆沈陽(yáng)科學(xué)學(xué)術(shù)年會(huì)論文集(信息科學(xué)與工程技術(shù)分冊(cè))[C];2012年
2 李燕;董愛娟;;加工薄壁件安裝面工藝探討[A];2009全國(guó)機(jī)電企業(yè)工藝年會(huì)<廈工杯>工藝征文論文集[C];2009年
3 廖勇軍;;薄壁件網(wǎng)格技術(shù)及計(jì)算經(jīng)濟(jì)性研究[A];2013中國(guó)汽車工程學(xué)會(huì)年會(huì)論文集[C];2013年
4 韓曉光;張鳳英;翟婷婷;;空間曲面薄壁件柔性裝配定位系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[A];第十五屆中國(guó)科協(xié)年會(huì)第13分會(huì)場(chǎng):航空發(fā)動(dòng)機(jī)設(shè)計(jì)、制造與應(yīng)用技術(shù)研討會(huì)論文集[C];2013年
5 彭昌永;高福全;范如源;;鋁合金薄壁件的點(diǎn)焊及表面處理[A];中國(guó)工程物理研究院科技年報(bào)(2003)[C];2003年
6 欒宇;解潤(rùn)鋒;;大型薄壁件-轉(zhuǎn)輪室精加工分析[A];第七屆(2009)中國(guó)鋼鐵年會(huì)論文集(下)[C];2009年
7 劉宇;傅戈雁;石世宏;王晨;;光內(nèi)送粉激光熔覆堆積扭曲薄壁件工藝參數(shù)的控制[A];第15屆全國(guó)特種加工學(xué)術(shù)會(huì)議論文集(下)[C];2013年
8 曹栩;駱合力;李尚平;張喜娥;馮滌;;Ni_3Al基合金薄壁件熔模精鑄工藝研究[A];動(dòng)力與能源用高溫結(jié)構(gòu)材料——第十一屆中國(guó)高溫合金年會(huì)論文集[C];2007年
9 梁朝堅(jiān);;鋁合金薄壁件鑄件變形研究分析[A];2009重慶市鑄造年會(huì)論文集[C];2009年
10 丁春艷;楊振國(guó);;聚碳酸酯薄壁件分層失效機(jī)制的研究[A];2007年中國(guó)機(jī)械工程學(xué)會(huì)年會(huì)論文集[C];2007年
相關(guān)博士學(xué)位論文 前8條
1 陳W,
本文編號(hào):1339604
本文鏈接:http://sikaile.net/kejilunwen/hangkongsky/1339604.html