復(fù)合材料異型構(gòu)件鋪放設(shè)備中間支撐系統(tǒng)研究
本文關(guān)鍵詞:復(fù)合材料異型構(gòu)件鋪放設(shè)備中間支撐系統(tǒng)研究 出處:《河北科技大學(xué)》2016年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 弱剛性 凸曲面 中間支撐裝置 控制算法 仿真
【摘要】:隨著復(fù)合材料的興起,纖維鋪放技術(shù)及設(shè)備的研發(fā)得到迅速發(fā)展和應(yīng)用。在對大型弱剛性構(gòu)件進(jìn)行鋪放加工時(shí),構(gòu)件在自身重力和鋪絲頭的壓力作用下容易造成彎曲變形,影響其表面加工質(zhì)量和成型精度。為了減少構(gòu)件的彎曲變形,需要增加一些輔助措施。本課題以小鷹500機(jī)身自動(dòng)化鋪放加工為研究背景,針對機(jī)身芯模剛性差,機(jī)身外形為凸曲面的特點(diǎn),設(shè)計(jì)了一種適用于大型凸曲面構(gòu)件旋轉(zhuǎn)鋪放成型的中間支撐系統(tǒng)。首先,本文對傳統(tǒng)切削加工過程添加輔助支撐和葉片鋪放成型“V”型支撐進(jìn)行了介紹,分析了兩類支撐裝置的優(yōu)缺點(diǎn),結(jié)合機(jī)身結(jié)構(gòu)特點(diǎn),提出了一種適用于飛機(jī)機(jī)身鋪放成型過程中的輔助支撐方案,即采用兩支撐輪的兩點(diǎn)支撐方案。其次,通過分析機(jī)身支撐截面形狀和DXF圖形存儲(chǔ)特點(diǎn),建立相應(yīng)的幾何模型,提出了一種適用于該支撐裝置的支撐運(yùn)動(dòng)軌跡算法,并對算法進(jìn)行了動(dòng)態(tài)性能分析與動(dòng)畫仿真制作。再次,根據(jù)所提出的支撐方案和運(yùn)動(dòng)軌跡算法,結(jié)合機(jī)身芯模的幾何特點(diǎn),對支撐裝置的機(jī)械結(jié)構(gòu)做了詳細(xì)的設(shè)計(jì)和選型計(jì)算,同時(shí),根據(jù)有限元法思想,利用ANSYS Workbench軟件對裝置關(guān)鍵零部件做了靜力學(xué)分析,驗(yàn)證了支撐裝置剛度的可靠性。最后,為實(shí)現(xiàn)對所設(shè)計(jì)支撐裝置的自動(dòng)化控制,進(jìn)行支撐控制系統(tǒng)研究。該支撐控制系統(tǒng)包括支撐輪運(yùn)動(dòng)控制系統(tǒng)和微機(jī)控制系統(tǒng)。微機(jī)控制系統(tǒng)負(fù)責(zé)信息監(jiān)控、參數(shù)設(shè)置和操作;支撐輪運(yùn)動(dòng)控制系統(tǒng)負(fù)責(zé)控制兩個(gè)支撐輪電機(jī)運(yùn)行。本文以小鷹500機(jī)身作為成型構(gòu)件,設(shè)計(jì)了一種基于纖維鋪放設(shè)備的中間支撐裝置和運(yùn)動(dòng)控制算法,通過對裝置進(jìn)行性能分析和運(yùn)動(dòng)仿真驗(yàn)證了算法的可行性。該裝置和算法不僅適用于纖維鋪放等增材制造方式,對于類似應(yīng)用環(huán)境下的切削加工等減材制造方式同樣適用,可推廣應(yīng)用于車銑復(fù)合加工等非圓凸曲面工件加工過程中的輔助支撐。
[Abstract]:With the rise of composite materials, the research and development of fiber placement technology and equipment have been developed and applied rapidly. When placing and processing large and weak rigid members, the bending deformation of components under the pressure of self gravity and fillet head can be easily affected, and the quality and accuracy of surface processing will be affected. In order to reduce the bending deformation of the component, some auxiliary measures need to be added. Based on the research background of the small hawk 500 fuselage automatic placement and processing, aiming at the rigid body core mold and the shape of the fuselage as the convex surface, a middle support system suitable for large-scale rotary surface parts is designed. First of all, based on the traditional machining process of adding auxiliary support and blade placement "V" support were introduced, analyzed the advantages and disadvantages of the two kinds of supporting device, combined with the characteristics of body structure, a method is presented for the aircraft fuselage placement support scheme aided in the process of forming, which adopts two point support wheel support scheme. Secondly, by analyzing the shape of the support section and the storage characteristics of DXF graphics, a corresponding geometric model is established, and a support motion trajectory algorithm for the support device is proposed, and the dynamic performance analysis and animation simulation are made for the algorithm. Again, according to the algorithm of support scheme and trajectory of the combination of geometric characteristics of fuselage core mold, mechanical structure of the supporting device to do the calculation, design and selection in detail at the same time, according to the theory of finite element method, the device key parts do static analysis by using ANSYS Workbench software to verify the reliability of the supporting device stiffness the. Finally, in order to realize the automatic control of the designed support device, the support control system is studied. The support control system includes the support wheel motion control system and the microcomputer control system. The microcomputer control system is responsible for the information monitoring, the parameter setting and the operation, and the support wheel motion control system is responsible for controlling the operation of the two support wheels. In this paper, the 500 body of Kitty Hawk is used as the forming member, and an intermediate support device and a motion control algorithm based on fiber placement equipment are designed. The feasibility of the algorithm is verified by performance analysis and motion simulation. The device and algorithm are applicable not only to fiber placement, but also to the way of increasing material, such as cutting and machining, etc., and can be applied to the auxiliary support of non-circular convex surface machining process such as turn milling and compound machining.
【學(xué)位授予單位】:河北科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:V262
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王永軍;何俊杰;元振毅;王浩軍;楊紹昌;蘇霞;;航空先進(jìn)復(fù)合材料鋪放及縫合設(shè)備的發(fā)展及應(yīng)用[J];航空制造技術(shù);2015年14期
2 何琴;;多路纖維鋪放控制系統(tǒng)的設(shè)計(jì)研究[J];機(jī)電工程;2015年03期
3 岳彥芳;辛志博;楊光;;一種非圓旋轉(zhuǎn)工件支撐裝置控制算法[J];組合機(jī)床與自動(dòng)化加工技術(shù);2014年12期
4 葉建友;呂彥明;李強(qiáng);陳林;;基于射流支撐的薄壁件加工變形補(bǔ)償分析[J];機(jī)械設(shè)計(jì)與研究;2014年03期
5 岳彥芳;辛志博;楊光;;非圓旋轉(zhuǎn)工件隨動(dòng)支撐裝置及其運(yùn)動(dòng)分析[J];制造業(yè)自動(dòng)化;2014年10期
6 程曉鼎;南琳;;模特機(jī)器人的機(jī)械臂設(shè)計(jì)及運(yùn)動(dòng)學(xué)仿真[J];機(jī)械設(shè)計(jì)與制造;2013年11期
7 王恩青;張斌;;復(fù)合材料在航空航天中的發(fā)展現(xiàn)狀和未來展望[J];科技信息;2011年33期
8 李映紅;趙智姝;韓勐;;復(fù)合材料在飛機(jī)結(jié)構(gòu)上的廣泛應(yīng)用[J];裝備制造技術(shù);2011年04期
9 王瑛琪;蓋登宇;宋以國;;纖維纏繞技術(shù)的現(xiàn)狀及發(fā)展趨勢[J];材料導(dǎo)報(bào);2011年05期
10 車現(xiàn)發(fā);周燕飛;;輔助支撐對薄壁件加工變形影響的數(shù)值模擬[J];機(jī)械制造;2011年02期
相關(guān)碩士學(xué)位論文 前8條
1 王磊;紗架與鋪絲頭一體化纖維鋪放系統(tǒng)研究[D];哈爾濱工業(yè)大學(xué);2015年
2 辛志博;非圓截面旋轉(zhuǎn)加工中間支撐系統(tǒng)設(shè)計(jì)[D];河北科技大學(xué);2014年
3 高彪;石蠟基填充材料輔助支承鈦合金薄壁件加工工藝研究[D];山東大學(xué);2013年
4 李玲;六自由度機(jī)器人運(yùn)動(dòng)學(xué)三維圖形仿真研究[D];大連海事大學(xué);2008年
5 吳猛;鋪放頭控制系統(tǒng)的研究[D];武漢理工大學(xué);2007年
6 崔為勇;平面鋪放的鋪放頭設(shè)計(jì)及仿真[D];武漢理工大學(xué);2007年
7 王朝綱;Z8F型機(jī)大梁帶鋪放機(jī)總體概念設(shè)計(jì)[D];天津工業(yè)大學(xué);2007年
8 曹德華;纖維鋪放機(jī)構(gòu)的研究與運(yùn)動(dòng)分析[D];武漢理工大學(xué);2006年
,本文編號(hào):1338611
本文鏈接:http://sikaile.net/kejilunwen/hangkongsky/1338611.html