天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 海洋學(xué)論文 >

深海鋼懸鏈線立管觸底區(qū)管土相互作用試驗(yàn)研究

發(fā)布時(shí)間:2018-10-14 09:25
【摘要】:當(dāng)前,我國深水油氣開采的關(guān)鍵技術(shù)和國際發(fā)達(dá)國家相比還有一定差距,在富含油氣資源的南海深水區(qū)至今尚無獨(dú)立開采能力。海底管道作為深海油氣資源運(yùn)輸?shù)淖罴逊绞?其動(dòng)力鋪設(shè)安全性、在位服役穩(wěn)定性等是其關(guān)鍵技術(shù)瓶頸。 隨著相對淺水區(qū)化石燃料的枯竭,越來越多儲(chǔ)存在深海中的油氣資源被廣泛開發(fā)。在深水條件下,傳統(tǒng)固定式生產(chǎn)平臺(tái)的結(jié)構(gòu)形式已經(jīng)不再適用,而各種各樣的浮式生產(chǎn)平臺(tái)或船只越來越多的被采用,例如半潛式平臺(tái)(Semi-submersible)和立柱式平臺(tái)(SPAR)、浮式生產(chǎn)儲(chǔ)運(yùn)卸貨裝置(FPSO);除了浮式結(jié)構(gòu)以外,一個(gè)完整的浮式生產(chǎn)系統(tǒng)(FPS)還包括錨泊系統(tǒng)和立管,立管是在海底井口和浮式平臺(tái)之間運(yùn)輸烴類產(chǎn)品或者運(yùn)出生產(chǎn)廢液的主要手段,這些柔性浮式生產(chǎn)系統(tǒng)的引入推動(dòng)了新型立管設(shè)計(jì)的發(fā)展。當(dāng)前,與傳統(tǒng)的垂直立管、柔性立管相比,鋼懸鏈線立管SCR (Steel catenary riser))已經(jīng)成為深水環(huán)境下油氣運(yùn)輸?shù)淖钣行Х椒?而對于立管疲勞的精確分析很大程度上取決于立管與海床土(TDP)的相互作用,因此,管土相互作用模型一直是近幾年的研究重點(diǎn)。 本文首先數(shù)值研究了SCR的非線性動(dòng)力響應(yīng),尤其是觸底區(qū)(TDZ)的動(dòng)力響應(yīng);然后通過大比尺室內(nèi)試驗(yàn)來模擬SCR與典型粘土質(zhì)海床的三維相互作用,通過對管道的一端施加循環(huán)運(yùn)動(dòng)來模擬動(dòng)力管土相互作用,詳細(xì)分析了溝槽形成過程、管線內(nèi)力變化以及管底超孔隙水壓力的發(fā)展,從管底超孔壓累積的角度解釋了管道埋深增加的機(jī)理,從極限破壞和疲勞破壞的角度為SCR的設(shè)計(jì)提供建議。另外,本文還研究了動(dòng)力管土相互作用前后管底土體的強(qiáng)度變化,增加了對土體軟化的認(rèn)識(shí)。具體的工作包括以下內(nèi)容: 1.采用Orcaflex有限元軟件,結(jié)合水動(dòng)力分析軟件AQWA,以中國南海某一大型深水半潛式鉆井平臺(tái)為例,建立“半潛式平臺(tái)-SCR-海床”的動(dòng)力相互作用數(shù)值模型,考慮波浪、海流等環(huán)境因素的綜合影響,研究SCR的非線性動(dòng)力響應(yīng),尤其是觸底區(qū)(TDZ)的動(dòng)力響應(yīng),為室內(nèi)大比尺試驗(yàn)提供參考。 2.針對粉質(zhì)粘土海床,首次設(shè)計(jì)和建立大比尺海洋管道與軟土室內(nèi)模型試驗(yàn),詳細(xì)介紹了試驗(yàn)系統(tǒng)的組成及其功能和試驗(yàn)準(zhǔn)備相關(guān)工作。 3.基于該大比尺三維土與結(jié)構(gòu)相互作用模型試驗(yàn)系統(tǒng),進(jìn)行了一系列試驗(yàn),主要研究觸地段豎向管土相互作用,包括靜力試驗(yàn)、動(dòng)力循環(huán)試驗(yàn)以及動(dòng)力循環(huán)結(jié)束后的T-bar試驗(yàn)。通過對位移、孔壓、管道彎矩監(jiān)測數(shù)據(jù)的分析,對軟弱海床上的豎向管土行互作用的機(jī)理進(jìn)行深入研究,揭示管道埋深增加的規(guī)律,研究土吸力對管道內(nèi)力變化的影響,為SCR的觸地段疲勞分析提供支持。
[Abstract]:At present, the key technologies of deep water oil and gas exploitation in China are still far from those in the developed countries, and there is no independent exploitation capacity in the deep water area of the South China Sea, which is rich in oil and gas resources. As the best way to transport deep sea oil and gas resources, submarine pipeline has the key technical bottleneck, such as safety of power laying and stability in service. With the depletion of fossil fuels in relatively shallow water, more and more oil and gas resources stored in the deep sea have been extensively exploited. In deep-water conditions, the structural forms of traditional fixed production platforms are no longer applicable, and a variety of floating production platforms or ships are increasingly used. For example, semi-submersible platform (Semi-submersible) and column platform (SPAR), floating production, storage and unloading device (FPSO);, in addition to floating structure, a complete floating production system (FPS) also includes mooring system and riser, Riser is the main means to transport hydrocarbon products or produce waste liquid between the bottom well head and floating platform. The introduction of these flexible floating production systems has promoted the development of new riser design. At present, compared with the traditional vertical riser and flexible riser, the steel catenary riser SCR (Steel catenary riser) has become the most effective method for oil and gas transportation in deep water environment. The exact analysis of riser fatigue depends largely on the interaction between riser and seabed soil (TDP), so the pipe-soil interaction model has been the focus of research in recent years. In this paper, the nonlinear dynamic response of SCR, especially the dynamic response of (TDZ) in the bottom contact region, is numerically studied, and then the three-dimensional interaction between SCR and typical clay seabed is simulated by a large scale laboratory test. By applying cyclic motion to one end of the pipeline to simulate the dynamic tube-soil interaction, the formation process of the grooves, the variation of the pipeline internal force and the development of the excess pore water pressure at the bottom of the pipe are analyzed in detail. The mechanism of pipe buried depth increase is explained from the point of view of superpore pressure accumulation at the bottom of the pipe, and some suggestions for the design of SCR are provided from the viewpoint of ultimate failure and fatigue failure. In addition, the change of soil strength before and after dynamic tube-soil interaction is studied, and the understanding of soil softening is increased. Specific work includes the following: 1. By using Orcaflex finite element software and hydrodynamic analysis software AQWA, a numerical model of dynamic interaction of a large deep water semi-submersible drilling platform in the South China Sea (South China Sea) is established. The numerical model of dynamic interaction of "semi-submersible platform-SCR- seabed" is established, and the wave is considered. The nonlinear dynamic response of SCR, especially the dynamic response of (TDZ) in bottom contact region, is studied by the combined effect of environmental factors such as current, which provides a reference for indoor large scale test. 2. Aiming at silty clay seabed, the laboratory model test of large scale offshore pipeline and soft soil is designed and established for the first time. The composition and function of the test system and the related work of test preparation are introduced in detail. Based on the large scale three-dimensional soil-structure interaction model test system, a series of experiments were carried out, including static test, dynamic cyclic test and T-bar test after the end of the dynamic cycle. By analyzing the monitoring data of displacement, pore pressure and pipe bending moment, the mechanism of vertical pipe-soil interaction on the weak seabed is studied in order to reveal the law of pipeline buried depth increase, and to study the influence of soil suction on the variation of pipeline internal force. To provide support for SCR contact fatigue analysis.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:P756.2

【參考文獻(xiàn)】

相關(guān)期刊論文 前5條

1 暢元江;陳國明;孫友義;許亮斌;彭朋;;Nonlinear Dynamic Analysis of Deepwater Drilling Risers Subjected to Random Loads[J];China Ocean Engineering;2008年04期

2 馬珉;呂學(xué)謙;;深水資源:中國能源可持續(xù)發(fā)展的重要領(lǐng)域——訪中國海洋石油總公司副總工程師曾恒一院士[J];高科技與產(chǎn)業(yè)化;2008年12期

3 許南;王飚;王輝;羅京;;數(shù)值分析技術(shù)在荔灣3-1項(xiàng)目安全施工方面的應(yīng)用[J];中國安全生產(chǎn)科學(xué)技術(shù);2013年07期

4 錢松;;海洋石油——石油生產(chǎn)增長的潛力所在[J];中國石油和化工經(jīng)濟(jì)分析;2006年02期

5 暢元江;陳國明;孫友義;殷志明;許亮斌;;基于波浪譜與鉆井船RAO的鉆井船運(yùn)動(dòng)模擬[J];系統(tǒng)仿真學(xué)報(bào);2009年05期

,

本文編號(hào):2270052

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/haiyang/2270052.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶ff174***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com