考慮儲(chǔ)能和需求響應(yīng)的高比例可再生能源綜合能源系統(tǒng)建模
發(fā)布時(shí)間:2021-08-31 19:20
人類(lèi)的日常活動(dòng)需要不同形式的能源,例如電力、熱能和天然氣;茉串a(chǎn)生了兩種最常用的能量載體(電和熱),而它也是造成全球變暖的主要原因。由于地質(zhì)資源的有限性和氣候變化,化石能源變得日益稀少和昂貴。這迫使人們轉(zhuǎn)向低碳、取之不盡、環(huán)境友好、便于獲取且有益于公共衛(wèi)生的可再生能源。相比其他可再生能源,風(fēng)能和太陽(yáng)能因?yàn)闊o(wú)碳特征而被大量開(kāi)發(fā)和利用。但是,風(fēng)能和太陽(yáng)能的隨機(jī)性使其被稱(chēng)為波動(dòng)性可再生能源,它們的不確定性和可變性會(huì)破壞電力系統(tǒng)的穩(wěn)定性。這項(xiàng)研究首先在中國(guó)的電網(wǎng)中加入了儲(chǔ)能和需求響應(yīng),通過(guò)減少燃料消耗和將臨界過(guò)剩發(fā)電量保持為零來(lái)消納更多的波動(dòng)性可再生能源。傳統(tǒng)上,電能和熱能載體是獨(dú)立運(yùn)行的,但轉(zhuǎn)換過(guò)程中的熱量損失導(dǎo)致其運(yùn)行效率低下。多能源載體的耦合對(duì)于解決上述問(wèn)題至關(guān)重要,而耦合可以基于新近的技術(shù)如熱電聯(lián)產(chǎn)、熱泵、需求響應(yīng)和儲(chǔ)能等。能源樞紐中的耦合節(jié)點(diǎn)可以促使電力系統(tǒng)向綜合能源系統(tǒng)進(jìn)行提高經(jīng)濟(jì)效益、靈活和無(wú)碳的能量轉(zhuǎn)換。因此,這項(xiàng)工作進(jìn)一步提出了智能能源樞紐的方案,通過(guò)使用能源系統(tǒng)分析工具Energy PLAN對(duì)中國(guó)2020年的電力、區(qū)域和個(gè)體供熱綜合能源系統(tǒng)進(jìn)行建模。通過(guò)添加熱泵、儲(chǔ)熱元...
【文章來(lái)源】:華南理工大學(xué)廣東省 211工程院校 985工程院校 教育部直屬院校
【文章頁(yè)數(shù)】:161 頁(yè)
【學(xué)位級(jí)別】:博士
【文章目錄】:
摘要
Abstract
Nomenclature
Chapter 1 Introduction
1.1 Research Background
1.2 Contextual Framework
1.2.1 Renewable Energy
1.2.2 Energy Storages
1.2.3 Demand Response
1.2.4 Integrated Energy System
1.2.5 Energy PLAN
1.3 Problem Motivation
1.4 Problem Statement
1.5 Aims and Objectives
1.6 Thesis structure
Chapter 2 Worldwide Demand Response Experience
2.1 DR in USA
2.2 DR in Europe
2.3 DR in China
2.3.1 Demand Response Related Policies in China
2.3.2 Developed DR programs in China
2.3.3 DR pilot projects
2.3.4 Barriers in implementing DR
2.3.5 Future suggestions
Chapter 3 Variable Renewable Energy Sources Integration in Electric Power System
3.1 Overview and Related Work
3.2 Objectives
3.3 System Model
3.3.1 System inputs
3.4 Case studies
3.4.1 Case 1 (reference case)
3.4.2 Case 2 (nuclear supply exclusion)
3.4.3 Case 3 (ES addition)
3.4.4 Case 4 (DR addition)
3.4.5 Case 5 (DR and ES addition)
3.5 Simulation Results and Discussion
3.5.1 Case 1 and Case 2
3.5.2 Case 3
3.5.3 Case 4
3.5.4 Case 5
3.6 Performance Analysis
Chapter 4 Integrated Energy System Modelling Based on Energy Hub
4.1 Overview and Related Work
4.2 Objectives
4.3 Proposed Smart Energy Hub
4.3.1 Mathematical Modelling
4.3.2 Constraints
4.4 Data Simulation for China 2020
4.4.1 Electricity Network
4.4.2 Heating Network
4.4.3 Costs
4.5 Scenarios Development and Results Simulation
4.5.1 Technical Simulation Strategies
4.5.2 Scenario 1 -- Reference model
4.5.3 Scenario 2 – Increasing VRES share
4.5.4 Scenario 3 – Heat pump inclusion
4.5.5 Scenario 4 – Thermal energy storage addition
4.5.6 Scenario 5 – Demand Response addition
4.6 Performance Analysis
Chapter 5 Individual Heating Alternating Scenarios and Energy Storages Evaluation in Integrated Energy System
5.1 Overview and Related Work
5.2 Objectives
5.3 Methodology
5.4 Data Simulation for Integrated Energy System of China for 2030
5.5 Modelling of Different Cases of Individual Heating
5.5.1 Individual Heating Base Case
5.5.2 Case 1: H2 Micro CHP
5.5.3 Case 2: Ngas Micro CHP
5.5.4 Case 3: Heat Pump
5.6 Modelling of Energy Storages
5.6.1 Pumped Hydro Storage
5.6.2 Rockbed Storage
5.7 Results and Discussion
5.7.1 Coal and Ngas Boilers in Individual Heating Infrastructure (Base Case)
5.7.2 Hydrogen Operated Micro-CHP in Individual Heating Infrastructure (Case 1)
5.7.3 Natural Gas Operated Micro-CHP in Individual Heating Infrastructure (Case 2)
5.7.4 Heat Pumps in Individual Heating Infrastructure (Case 3)
5.7.5 Single Penstock Pumped Hydro Storage
5.7.6 Double Penstock Pumped Hydro Storage
5.7.7 Rockbed Storage
5.8 Performance Analysis
Chapter 6 Socio-Economic Analysis of Integrated Energy System
6.1 Overview and Related Work
6.2 Objectives
6.3 Methodology and Data Gathering
6.3.1 Market Economic Simulation
6.4 Results Simulations
6.4.1 Case 1: Scenario 5 for IES Modelling of China for the Year 2020
6.4.2 Case 2: Feasibility analysis
6.4.3 Case 3: Market exchange analysis
6.5 Performance Analysis
Chapter 7 Conclusions and Future Work
7.1 Conclusion
7.2 Future Work
References
攻讀博士/碩士學(xué)位期間取得的研究成果
Acknowledgements
附件
【參考文獻(xiàn)】:
期刊論文
[1]廣東電力市場(chǎng)需求側(cè)響應(yīng)交易機(jī)制研究[J]. 楊威,曾智健,陳皓勇,汪芳,郭曼蘭. 廣東電力. 2017(05)
[2]From demand response to transactive energy: state of the art[J]. Sijie CHEN,Chen-Ching LIU. Journal of Modern Power Systems and Clean Energy. 2017(01)
[3]Demand response for frequency control of multi-area power system[J]. Yu-Qing BAO,Yang LI,Beibei WANG,Minqiang HU,Peipei CHEN. Journal of Modern Power Systems and Clean Energy. 2017(01)
[4]低油價(jià)對(duì)天然氣產(chǎn)業(yè)鏈的影響[J]. 劉毅軍,馬莉. 天然氣工業(yè). 2016(06)
本文編號(hào):3375468
【文章來(lái)源】:華南理工大學(xué)廣東省 211工程院校 985工程院校 教育部直屬院校
【文章頁(yè)數(shù)】:161 頁(yè)
【學(xué)位級(jí)別】:博士
【文章目錄】:
摘要
Abstract
Nomenclature
Chapter 1 Introduction
1.1 Research Background
1.2 Contextual Framework
1.2.1 Renewable Energy
1.2.2 Energy Storages
1.2.3 Demand Response
1.2.4 Integrated Energy System
1.2.5 Energy PLAN
1.3 Problem Motivation
1.4 Problem Statement
1.5 Aims and Objectives
1.6 Thesis structure
Chapter 2 Worldwide Demand Response Experience
2.1 DR in USA
2.2 DR in Europe
2.3 DR in China
2.3.1 Demand Response Related Policies in China
2.3.2 Developed DR programs in China
2.3.3 DR pilot projects
2.3.4 Barriers in implementing DR
2.3.5 Future suggestions
Chapter 3 Variable Renewable Energy Sources Integration in Electric Power System
3.1 Overview and Related Work
3.2 Objectives
3.3 System Model
3.3.1 System inputs
3.4 Case studies
3.4.1 Case 1 (reference case)
3.4.2 Case 2 (nuclear supply exclusion)
3.4.3 Case 3 (ES addition)
3.4.4 Case 4 (DR addition)
3.4.5 Case 5 (DR and ES addition)
3.5 Simulation Results and Discussion
3.5.1 Case 1 and Case 2
3.5.2 Case 3
3.5.3 Case 4
3.5.4 Case 5
3.6 Performance Analysis
Chapter 4 Integrated Energy System Modelling Based on Energy Hub
4.1 Overview and Related Work
4.2 Objectives
4.3 Proposed Smart Energy Hub
4.3.1 Mathematical Modelling
4.3.2 Constraints
4.4 Data Simulation for China 2020
4.4.1 Electricity Network
4.4.2 Heating Network
4.4.3 Costs
4.5 Scenarios Development and Results Simulation
4.5.1 Technical Simulation Strategies
4.5.2 Scenario 1 -- Reference model
4.5.3 Scenario 2 – Increasing VRES share
4.5.4 Scenario 3 – Heat pump inclusion
4.5.5 Scenario 4 – Thermal energy storage addition
4.5.6 Scenario 5 – Demand Response addition
4.6 Performance Analysis
Chapter 5 Individual Heating Alternating Scenarios and Energy Storages Evaluation in Integrated Energy System
5.1 Overview and Related Work
5.2 Objectives
5.3 Methodology
5.4 Data Simulation for Integrated Energy System of China for 2030
5.5 Modelling of Different Cases of Individual Heating
5.5.1 Individual Heating Base Case
5.5.2 Case 1: H2 Micro CHP
5.5.3 Case 2: Ngas Micro CHP
5.5.4 Case 3: Heat Pump
5.6 Modelling of Energy Storages
5.6.1 Pumped Hydro Storage
5.6.2 Rockbed Storage
5.7 Results and Discussion
5.7.1 Coal and Ngas Boilers in Individual Heating Infrastructure (Base Case)
5.7.2 Hydrogen Operated Micro-CHP in Individual Heating Infrastructure (Case 1)
5.7.3 Natural Gas Operated Micro-CHP in Individual Heating Infrastructure (Case 2)
5.7.4 Heat Pumps in Individual Heating Infrastructure (Case 3)
5.7.5 Single Penstock Pumped Hydro Storage
5.7.6 Double Penstock Pumped Hydro Storage
5.7.7 Rockbed Storage
5.8 Performance Analysis
Chapter 6 Socio-Economic Analysis of Integrated Energy System
6.1 Overview and Related Work
6.2 Objectives
6.3 Methodology and Data Gathering
6.3.1 Market Economic Simulation
6.4 Results Simulations
6.4.1 Case 1: Scenario 5 for IES Modelling of China for the Year 2020
6.4.2 Case 2: Feasibility analysis
6.4.3 Case 3: Market exchange analysis
6.5 Performance Analysis
Chapter 7 Conclusions and Future Work
7.1 Conclusion
7.2 Future Work
References
攻讀博士/碩士學(xué)位期間取得的研究成果
Acknowledgements
附件
【參考文獻(xiàn)】:
期刊論文
[1]廣東電力市場(chǎng)需求側(cè)響應(yīng)交易機(jī)制研究[J]. 楊威,曾智健,陳皓勇,汪芳,郭曼蘭. 廣東電力. 2017(05)
[2]From demand response to transactive energy: state of the art[J]. Sijie CHEN,Chen-Ching LIU. Journal of Modern Power Systems and Clean Energy. 2017(01)
[3]Demand response for frequency control of multi-area power system[J]. Yu-Qing BAO,Yang LI,Beibei WANG,Minqiang HU,Peipei CHEN. Journal of Modern Power Systems and Clean Energy. 2017(01)
[4]低油價(jià)對(duì)天然氣產(chǎn)業(yè)鏈的影響[J]. 劉毅軍,馬莉. 天然氣工業(yè). 2016(06)
本文編號(hào):3375468
本文鏈接:http://sikaile.net/kejilunwen/dongligc/3375468.html
最近更新
教材專(zhuān)著