改性吸附劑噴射脫汞的實驗及機理研究
[Abstract]:Mercury is a highly toxic pollutant with strong volatility, bioaccumulation and environmental durability, and coal is the largest source of anthropogenic mercury. Therefore, the emission control of coal-fired mercury has become an important research direction in the current energy environment. At present, the most mature and feasible technology for controlling the mercury discharge of the coal-fired power plant is the activated carbon injection technology (ACI), because the activated carbon injection and demercuration process is a complex two-phase flow reaction system including flow, heat transfer, mass transfer and chemical reaction, The application of the technology in the coal-fired power plant also has more problems. The adsorption and adsorption mechanism of mercury on the surface of the adsorbent, the adsorption kinetics of mercury, the thermodynamic and adsorption equilibrium characteristics, the key parameters and the influencing mechanism of the adsorption and demercuration efficiency of the adsorbent, the mechanism of the demercuration of the adsorbent and the potential of the synergistic removal of SO2 and NO, Research on the scientific problems of the sorbent injection demercuration prediction model and so on. Four demercuration adsorbents of the original activated carbon (R-AC), NH _ 4Br-modified activated carbon (NH4Br-AC), NH4Cl-modified activated carbon (NH4Cl-AC) and fly ash (FA) were prepared. The influence of the factors such as particle size and flue gas composition on the static adsorption of mercury was studied. The adsorption of mercury on the surface of the adsorbent was studied by a program temperature-raising and desorption (TPD) method, and the mercury adsorption mechanism of different adsorbents was analyzed. The results show that the modification of NH _ 4Br and NH _ 4Cl is mainly in the surface of the active carbon and the mesopore in the amorphous form; the static mercury adsorption property of the adsorbent is NH4Br-AC4Cl-ACR-ACFA; the adsorption of the R-AC to the Hg0 is mainly due to the physical adsorption, a small amount of chemical adsorption exists, the product is HgO, and the adsorption of the NH4Br-AC to the Hg0 is mainly chemical adsorption, The product is HgBr2; O2 promotes the adsorption of R-AC and NH 4Br-AC to H-type; SO2 has different effects on the Hg0 adsorption of R-AC and NH _ 4Br-AC; in the presence of SO2, the amount of HgBr2 produced on the surface of the NH4Br-AC is reduced, but a small amount of HgS is generated; and NO promotes the adsorption of the R-AC and the NH4Br-AC to the Hg0, as Hg (NO3)2 is generated on the surface of the adsorbent. The adsorption kinetics of gas-phase mercury on the surface of activated carbon and fly ash were studied by dynamic model. The activation energy, initial mercury adsorption rate and adsorption thermodynamics and adsorption equilibrium of mercury on the surface of activated carbon and fly ash were calculated. The results show that the mercury adsorption process can be divided into two stages: surface adsorption and internal diffusion adsorption; while the external mass transfer and the internal diffusion limit the mercury adsorption process, the chemical adsorption of the mercury in the active site is the control step of the adsorption rate of the R-AC and the NH4Br-AC mercury; for the fly ash, the external mass transfer is the mercury adsorption rate control step; The activation energy of the adsorption of mercury on the surface of R-AC and NH 4Br-AC is-10.06610/ mol and-28.068 kJ/ mol, indicating that the adsorption is a common function of physical adsorption and chemisorption, and the initial mercury adsorption rate of the mercury on the surface of the adsorbent is positively related to the mercury adsorption capacity of the adsorbent; The thermodynamic analysis shows that the adsorption of mercury on the surface of R-AC and NH 4Br-AC is a spontaneous and endothermic process, and the adsorption takes physical adsorption as the main and the chemical adsorption is the auxiliary. The adsorption process increases the confusion and complexity of the gas-solid interface; the adsorption of the mercury on the R-AC surface can be well described by the Temkin and the Langmuir equation, The adsorption of mercury on the surface of the NH4Br-AC and FA can be well described by the Freundlich equation. In this paper, an experimental device for the injection and demercuration of the first simulated flue gas entrained flow reactor in China was established. The mercury-demercuration characteristics of R-AC, NH 4Br-AC, NH4Cl-AC and NH 4Br-modified fly ash (NH4Br-FA) were studied. The concentration of Hg0, the residence time, the temperature of the flue gas and the particle size of the adsorbent were investigated. The effect of injection quantity and other parameters on the injection and demercuration is analyzed, and the mercury removal mechanism of different adsorbents is analyzed. The results show that the mercury concentration of the flue gas is increased, the residence time of the adsorbent is increased, the particle size of the adsorbent is reduced, the mercury absorption efficiency and the unit mercury adsorption capacity of the R-AC and the NH4Br-AC can be improved, the injection amount of the adsorbent can be increased, the mercury removal rate can be improved, the adsorption amount of the unit mercury is reduced, and the smoke temperature is increased, The mercury removal rate of the R-AC is reduced, and the mercury removal rate of the NH4Br-AC is increased; the oxidation and adsorption of the NH 4Br-modified to the flue gas Hg0 are stronger than that of the NH4Cl; during the injection and adsorption process, the Br or C1 groups on the surface of the NH4Br-AC and the NH4Cl-AC can oxidize the Hg0 molecules in the flue gas into HgBr2 or HgCl2, and the Hg0 is more easily absorbed compared with the HgCl2; The mercury removal rate of NH 4Br-FA is low, and the removal of Hg0 in the flue gas is mainly the oxidation of Hg0. Because the specific surface area and the pore structure of the fly ash are both poor, the adsorption rate of Hg0 is reduced. In the 6 kWth coal-fired circulating fluidized-bed-entrained-flow reactor-injection demercuration experiment device, the mercury emission and distribution characteristics of the combustion of anthracite in Guizhou were studied. The mercury-demercuration characteristics of NH _ 4Br-AC in coal-fired flue gas and the potential of co-removal of SO2 and NO were investigated. The results show that the mercury in the burning of the anthracite is mainly granular mercury, the proportion is 77.34%, the total mercury in the gas phase is 22.65%, the Hg0 is 10.27%, the Hg2 + is 12.38%, the residence time of the NH4Br-AC is increased from 0.59s to 1.79s, and the demercuration rate is increased from 70.7% to 90.5%; The Br-functional group of the surface of the NH4Br-AC significantly increased its adsorption affinity to mercury; the synergistic removal rate of the SO2 in the injection of NH4Br-AC reached 30.6%, mainly the chemical adsorption of SO2 on the surface of the NH4Br-AC, the capillary condensation and the partial SO2 being oxidized to SO3; the NO co-removal rate of the sprayed NH4Br-AC reached 38%, The chemical adsorption of NO on the surface of the NH4Br-AC and the partial NO are oxidized to NO2. A new model of activated carbon injection and demercuration is proposed. The model is based on the process of external membrane mass transfer and surface adsorption, and the equilibrium and adsorption of mercury are considered. The results show that the model can reasonably predict the mercury removal efficiency of activated carbon in the flue. The model can be used to evaluate the consumption of activated carbon. The model parameters include the concentration of activated carbon, the particle diameter and the equilibrium constant. The external mass transfer coefficient and the residence time of activated carbon have an important influence on the mercury removal efficiency of activated carbon.
【學位授予單位】:東南大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:X773
【相似文獻】
相關(guān)期刊論文 前10條
1 趙玉冰;郭淼;白中華;馬辰騰;史亞微;;活性焦脫汞實驗研究[J];潔凈煤技術(shù);2013年01期
2 張翔;王宏偉;;關(guān)于脫汞技術(shù)探討[J];環(huán)境與生活;2014年08期
3 陳振松;楊國華;黃三;于建偉;盛偉鵬;譚均軍;;純活性炭粉末布袋脫汞的比較研究[J];中國礦業(yè)大學學報;2011年04期
4 馬宵穎;;粉煤灰改性脫汞實驗研究[J];粉煤灰;2011年04期
5 譚增強;邱建榮;蘇勝;李允超;劉子紅;曹蕃;曾漢才;向軍;;高效脫汞吸附劑的脫汞機理研究[J];工程熱物理學報;2012年02期
6 史鑫;;冶煉煙氣脫汞技術(shù)進展[J];有色金屬工程;2012年04期
7 梁金鶯;朱海山;張秀玲;王龍剛;;含碳含汞天然氣的脫汞設(shè)計優(yōu)化[J];石油規(guī)劃設(shè)計;2012年04期
8 趙毅;郝潤龍;;現(xiàn)有設(shè)備協(xié)同脫汞技術(shù)概述[J];華東電力;2013年02期
9 資振生,武金麗,王ng淦;酸性碘汞絡(luò)合液電解脫汞[J];有色冶煉;1981年09期
10 繆煥文;對合成氣脫汞工藝的探討[J];聚氯乙烯;1984年04期
相關(guān)會議論文 前7條
1 錢林;史蕓;李小艷;;我國廢氣脫汞技術(shù)專利信息分析與戰(zhàn)略研究[A];2014年中華全國專利代理人協(xié)會年會第五屆知識產(chǎn)權(quán)論壇論文集(第一部分)[C];2014年
2 尤燕青;;燃煤煙氣電袋復(fù)合除塵脫汞協(xié)同技術(shù)探討[A];2012火電廠污染物凈化與節(jié)能技術(shù)研討會論文集[C];2012年
3 丁峰;張軍營;趙永椿;鄭楚光;;礦物改性煙氣脫汞的研究[A];中國礦物巖石地球化學學會第12屆學術(shù)年會論文集[C];2009年
4 陳其顥;朱林;王可輝;;燃煤電廠汞排放及其控制技術(shù)綜述[A];第十五屆中國科協(xié)年會第9分會場:火電廠煙氣凈化與節(jié)能技術(shù)研討會論文集[C];2013年
5 王亞芝;;燃煤電廠煙氣脫汞技術(shù)概述[A];環(huán)境與健康:河北省環(huán)境科學學會環(huán)境與健康論壇暨2008年學術(shù)年會論文集[C];2008年
6 ;UOP天然氣脫汞解決方案[A];“寶塔油氣”杯第四屆天然氣凈化、液化、儲運與綜合利用技術(shù)交流會暨LNG國產(chǎn)化新技術(shù)新設(shè)備展示會論文集[C];2014年
7 高威;劉清才;楊劍;鹿存房;席文昌;馬有光;邱星;;粉煤灰基脫汞吸附劑硫沉積對微觀結(jié)構(gòu)影響[A];2010年全國冶金物理化學學術(shù)會議專輯(下冊)[C];2010年
相關(guān)重要報紙文章 前7條
1 本報記者 賈科華;廣東表示脫汞措施不折不扣落實[N];中國能源報;2012年
2 劉澤民 龔偉;株冶鋅煙氣脫汞改造工程正式投入運行[N];中國有色金屬報;2005年
3 本報記者 郭力方;火電廠脫汞將提上日程[N];中國證券報;2013年
4 記者 馬建勝;華能脫硝脫汞技術(shù)研發(fā)項目國際領(lǐng)先[N];中國電力報;2013年
5 本報記者 賈科華;火電限汞進行時[N];中國能源報;2012年
6 通訊員 龔偉;株冶鋅煙氣脫汞改造工程投入運行[N];湖南日報;2005年
7 王書肖;燃煤大氣汞排放控制技術(shù)[N];中國環(huán)境報;2008年
相關(guān)博士學位論文 前6條
1 顧永正;電站飛灰吸附劑改性及噴射脫汞機理和實驗研究[D];華北電力大學(北京);2016年
2 周強;改性吸附劑噴射脫汞的實驗及機理研究[D];東南大學;2016年
3 杜雯;銅基改性吸附劑脫汞機理研究[D];清華大學;2014年
4 孔凡海;鐵基納米吸附劑煙氣脫汞實驗及機理研究[D];華中科技大學;2010年
5 劉松濤;煙氣同時脫除Hg~0、SO_2和NO_X的實驗研究[D];華北電力大學(河北);2009年
6 譚增強;改性竹炭基吸附劑脫汞的實驗及機理研究[D];華中科技大學;2012年
相關(guān)碩士學位論文 前10條
1 齊登輝;共沉淀制備1Pd5Fe_2O_3/Al_2O_3吸附劑及其中溫煤氣脫汞性能的研究[D];太原理工大學;2016年
2 李青連;Pd/Fe和Pd-Ce/Fe磁性材料脫除模擬煤氣中單質(zhì)汞的研究[D];太原理工大學;2016年
3 劉芳芳;改性礦物吸附劑脫除煙氣中單質(zhì)汞的研究[D];華中科技大學;2013年
4 洪亞光;模擬煙氣吸附劑噴射脫汞協(xié)同脫硫脫硝實驗研究[D];東南大學;2015年
5 石佩佩;活性炭孔結(jié)構(gòu)和改性對燃煤煙氣脫汞的影響及機理研究[D];中國礦業(yè)大學;2016年
6 要杰;液相煙氣脫汞動力學研究[D];華北電力大學(河北);2008年
7 馬宵穎;液相煙氣脫汞實驗研究[D];華北電力大學(河北);2008年
8 郭晉偉;燃煤鍋爐脫汞效率設(shè)計計算研究[D];華北電力大學;2015年
9 李曉蕾;模擬煙氣同時脫硫脫硝脫汞的實驗研究[D];華北電力大學;2012年
10 游華偉;MnOx-CeO_2/γ-Al_2O_3催化劑脫硝脫汞的實驗研究[D];華中科技大學;2012年
,本文編號:2485945
本文鏈接:http://sikaile.net/kejilunwen/dongligc/2485945.html