燃料提純對(duì)提升天然氣發(fā)動(dòng)機(jī)性能影響的研究
[Abstract]:The in-cylinder heat to power conversion efficiency of the internal combustion engine increases with the increase of compression ratio in a certain range. For example, the compression ratio is about 11:1, for each unit of increase, the thermal efficiency can be increased by 2 to 3 percentage points. For engines with spark ignition and premixed combustion, such as gasoline engines and most gas engines, the compression ratio is usually lower at low speed and under high load due to detonation restrictions. If the octane number of the fuel can be increased, the compression ratio of the engine can be raised accordingly and the fuel economy can be improved. In this paper, the performance optimization of a turbocharged intercooled, spark plug ignition, inlet manifold single point injection, premixed combustion natural gas engine is studied by using engine performance test bench and combustion analyzer. In this study, the octane number of the fuel is greatly improved than that of the liquefied natural gas in the market. Furthermore, the compression ratio of natural gas engine is improved, the thermal efficiency of engine is improved, the power performance is improved and the economy is improved. After the best result of compression ratio is obtained by bench test, the actual working condition of the engine is verified. In a whole vehicle with the same engine, the optimum compression ratio CR13.6 (Compression Ratio) piston is modified, and liquid methane is used as fuel to verify the results of engine steady state test. In this study, the compression ratio of the engine was gradually increased from 11.6 in the original engine to 12.6C13. 6 / 14.6 / 15.6. then the performance of the engine was tested separately, including the combustion process in the cylinder of the whole working cycle of the engine. State parameters (such as inlet and exhaust pressure) and performance parameters (power, torque, specific gas consumption, etc.). The effects of compression ratio, ignition advance angle and excess air coefficient on engine power, economy and emission performance are analyzed. Through the analysis of the test results of the bench and the whole vehicle, it can be seen that without changing other mechanical structures and related control parameters, the increase of compression ratio has little effect on the engine's dynamic performance. When the compression ratio is increased, the NOx emission of the engine becomes worse. The engine economy is optimized with the increase of compression ratio, and the best effect is achieved when the compression ratio is 13.6. Compared with the compression ratio of 11.6, the specific gas consumption decreased by 4% or 6% under different rotational speed conditions. When the compression ratio is further increased, the combustion situation in the cylinder deteriorates, especially when the non-liquid methane is used, the knock trend becomes more obvious, which leads to the decrease of the economy.
【學(xué)位授予單位】:湖南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TK431
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 W.QD;俄開(kāi)發(fā)出提高汽車發(fā)動(dòng)機(jī)性能新技術(shù)[J];軍民兩用技術(shù)與產(chǎn)品;2001年03期
2 袁風(fēng);左洪福;;航空發(fā)動(dòng)機(jī)性能衰退率計(jì)算方法研究[J];航空維修與工程;2009年02期
3 崔濤;王宇明;張付軍;王文清;;發(fā)動(dòng)機(jī)性能改進(jìn)展望[J];汽車維修與保養(yǎng);2007年05期
4 毛彩云;吳慕春;陸華忠;;汽車發(fā)動(dòng)機(jī)性能的模糊綜合評(píng)價(jià)方法[J];華南農(nóng)業(yè)大學(xué)學(xué)報(bào);2010年03期
5 何勇;黃帥;伍逸夫;謝小平;;環(huán)境因素對(duì)某型發(fā)動(dòng)機(jī)性能的影響及其修正[J];艦船電子工程;2012年06期
6 崔維玉;周可昌;;工作氣壓對(duì)氣動(dòng)發(fā)動(dòng)機(jī)性能的影響[J];鑿巖機(jī)械與風(fēng)動(dòng)工具;1983年04期
7 顧永根;大氣濕度、燃油成份和燃?xì)怆x解對(duì)發(fā)動(dòng)機(jī)性能的影響及其在發(fā)動(dòng)機(jī)性能計(jì)算通用程序中的應(yīng)用[J];工程熱物理學(xué)報(bào);1986年01期
8 劉晉萍 ,夏英平;氣流變化改善了發(fā)動(dòng)機(jī)性能[J];車用發(fā)動(dòng)機(jī);1990年04期
9 江冰;談國(guó)產(chǎn)車用汽油對(duì)發(fā)動(dòng)機(jī)性能及排放的影響[J];山西交通科技;1999年04期
10 黃燕曉;李書明;楊念蘇;;基于貝葉斯反饋云模型的航空發(fā)動(dòng)機(jī)性能評(píng)估[J];航空制造技術(shù);2014年07期
相關(guān)會(huì)議論文 前8條
1 張淑華;;柴油品質(zhì)對(duì)發(fā)動(dòng)機(jī)性能及排放的影響[A];中國(guó)汽車工程學(xué)會(huì)燃料與潤(rùn)滑油分會(huì)第十二屆年會(huì)論文集[C];2006年
2 李娟娟;;高原條件下發(fā)動(dòng)機(jī)性能的變化與調(diào)整[A];第七屆河南省汽車工程科技學(xué)術(shù)研討會(huì)論文集[C];2010年
3 黃鶯;王占學(xué);劉增文;張建東;;基于新型渦輪冷卻算法的航空發(fā)動(dòng)機(jī)性能計(jì)算模型[A];中國(guó)航空學(xué)會(huì)第七屆動(dòng)力年會(huì)論文摘要集[C];2010年
4 趙飛;周唯杰;;基于模擬退火K均值算法的民航發(fā)動(dòng)機(jī)性能狀態(tài)評(píng)估研究[A];中國(guó)航空學(xué)會(huì)第七屆動(dòng)力年會(huì)論文摘要集[C];2010年
5 賀元元;王西耀;;進(jìn)排氣與發(fā)動(dòng)機(jī)性能的關(guān)聯(lián)分析[A];第十五屆全國(guó)激波與激波管學(xué)術(shù)會(huì)議論文集(上冊(cè))[C];2012年
6 王樂(lè)明;李軍;張百靈;劉迎春;;濕壓縮對(duì)航空發(fā)動(dòng)機(jī)性能影響研究[A];大型飛機(jī)關(guān)鍵技術(shù)高層論壇暨中國(guó)航空學(xué)會(huì)2007年學(xué)術(shù)年會(huì)論文集[C];2007年
7 尹澤勇;;各向異性單晶葉片強(qiáng)度壽命研究[A];面向21世紀(jì)的科技進(jìn)步與社會(huì)經(jīng)濟(jì)發(fā)展(下冊(cè))[C];1999年
8 申福林;劉冬;;尾氣加熱器在客車上應(yīng)用的利弊[A];2005年中國(guó)客車學(xué)術(shù)年會(huì)論文集[C];2005年
相關(guān)重要報(bào)紙文章 前1條
1 通訊員 張文俊;ARJ21——700圓滿完成發(fā)動(dòng)機(jī)性能試飛[N];中國(guó)航空?qǐng)?bào);2010年
相關(guān)博士學(xué)位論文 前1條
1 孫豐誠(chéng);航空發(fā)動(dòng)機(jī)性能尋優(yōu)控制技術(shù)研究[D];南京航空航天大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 李心月;機(jī)外預(yù)熱柴油對(duì)發(fā)動(dòng)機(jī)性能影響的試驗(yàn)研究[D];東北林業(yè)大學(xué);2015年
2 嚴(yán)駿;燃料提純對(duì)提升天然氣發(fā)動(dòng)機(jī)性能影響的研究[D];湖南大學(xué);2016年
3 王芳;航空發(fā)動(dòng)機(jī)性能尋優(yōu)控制研究[D];西北工業(yè)大學(xué);2005年
4 顏景操;海馬某發(fā)動(dòng)機(jī)性能優(yōu)化研究[D];湖南大學(xué);2014年
5 韓朋;基于航空發(fā)動(dòng)機(jī)性能的維修成本管理與控制研究[D];南京航空航天大學(xué);2009年
6 徐魯兵;面向?qū)ο蟮暮娇瞻l(fā)動(dòng)機(jī)性能仿真系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[D];西北工業(yè)大學(xué);2007年
7 甄旭東;發(fā)動(dòng)機(jī)性能的評(píng)估及增壓器優(yōu)選的研究[D];北京交通大學(xué);2009年
8 郭永紅;492甲醇裂解氣發(fā)動(dòng)機(jī)性能優(yōu)化研究[D];中北大學(xué);2009年
9 王健康;基于機(jī)載復(fù)合模型及SQP的發(fā)動(dòng)機(jī)性能尋優(yōu)控制研究[D];南京航空航天大學(xué);2010年
10 游伏兵;LNG“老化”及其對(duì)發(fā)動(dòng)機(jī)性能影響研究[D];武漢理工大學(xué);2004年
,本文編號(hào):2210400
本文鏈接:http://sikaile.net/kejilunwen/dongligc/2210400.html